These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24403171)

  • 1. Ruthenium complexes of tripodal ligands with pyridine and triazole arms: subtle tuning of thermal, electrochemical, and photochemical reactivity.
    Weisser F; Hohloch S; Plebst S; Schweinfurth D; Sarkar B
    Chemistry; 2014 Jan; 20(3):781-93. PubMed ID: 24403171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning of redox potentials for the design of ruthenium anticancer drugs -- an electrochemical study of [trans-RuCl(4)L(DMSO)](-) and [trans-RuCl(4)L(2)](-) complexes, where L = imidazole, 1,2,4-triazole, indazole.
    Reisner E; Arion VB; Guedes da Silva MF; Lichtenecker R; Eichinger A; Keppler BK; Kukushkin VY; Pombeiro AJ
    Inorg Chem; 2004 Nov; 43(22):7083-93. PubMed ID: 15500346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring Ru(II) pyridine/triazole oxygenation catalysts and using photoreactivity to probe their electronic properties.
    Weisser F; Stevens H; Klein J; van der Meer M; Hohloch S; Sarkar B
    Chemistry; 2015 Jun; 21(24):8926-38. PubMed ID: 25960319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, structure, and spectroscopic, photochemical, redox, and catalytic properties of ruthenium(II) isomeric complexes containing dimethyl sulfoxide, chloro, and the dinucleating bis(2-pyridyl)pyrazole ligands.
    Sens C; Rodríguez M; Romero I; Llobet A; Parella T; Sullivan BP; Benet-Buchholz J
    Inorg Chem; 2003 Mar; 42(6):2040-8. PubMed ID: 12639139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning ligand effects and probing the inner-workings of bond activation steps: generation of ruthenium complexes with tailor-made properties.
    Weisser F; Plebst S; Hohloch S; van der Meer M; Manck S; Führer F; Radtke V; Leichnitz D; Sarkar B
    Inorg Chem; 2015 May; 54(10):4621-35. PubMed ID: 25947040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(II)-mediated coupling reaction of acetonitrile with 1H-indazole.
    Reisner E; Arion VB; Rufińska A; Chiorescu I; Schmid WF; Keppler BK
    Dalton Trans; 2005 Jul; (14):2355-64. PubMed ID: 15995743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, structure characterization, and oxidation activity of ruthenium complexes with tripodal ligands bearing noncovalent interaction sites.
    Jitsukawa K; Oka Y; Yamaguchi S; Masuda H
    Inorg Chem; 2004 Dec; 43(25):8119-29. PubMed ID: 15578852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-(2-Picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity.
    Bratsos I; Urankar D; Zangrando E; Genova-Kalou P; Košmrlj J; Alessio E; Turel I
    Dalton Trans; 2011 May; 40(19):5188-99. PubMed ID: 21465046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Mononuclear and Dinuclear Ruthenium Complexes with Tris(2-pyridylmethyl)amine and Tris(5-methyl-2-pyridylmethyl)amine.
    Kojima T; Amano T; Ishii Y; Ohba M; Okaue Y; Matsuda Y
    Inorg Chem; 1998 Aug; 37(16):4076-4085. PubMed ID: 11670527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of potent antitumor complex trans-[Ru(III)Cl4(indazole)2]- with a DNA-relevant nucleobase and thioethers: insight into biological action.
    Egger A; Arion VB; Reisner E; Cebrián-Losantos B; Shova S; Trettenhahn G; Keppler BK
    Inorg Chem; 2005 Jan; 44(1):122-32. PubMed ID: 15627368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(II) complexes: experimental and computational investigations.
    Akl J; Sasaki I; Lacroix PG; Malfant I; Mallet-Ladeira S; Vicendo P; Farfán N; Santillan R
    Dalton Trans; 2014 Sep; 43(33):12721-33. PubMed ID: 25011547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of hydrogen bonding to metal-bound ligands can contribute to changes in the redox behaviour of metal centres.
    Mareque Rivas JC; Hinchley SL; Metteau L; Parsons S
    Dalton Trans; 2006 May; (19):2316-22. PubMed ID: 16688319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of ruthenium(II) complexes with anticancer drugs as ligands. Design of metal-based phototherapeutic agents.
    Cini R; Tamasi G; Defazio S; Corsini M; Zanello P; Messori L; Marcon G; Piccioli F; Orioli P
    Inorg Chem; 2003 Dec; 42(24):8038-52. PubMed ID: 14632524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of novel ferrocene-containing pyridylamine ligands and their ruthenium(II) complexes: electronic communication through hydrogen-bonded amide linkage.
    Kojima T; Noguchi D; Nakayama T; Inagaki Y; Shiota Y; Yoshizawa K; Ohkubo K; Fukuzumi S
    Inorg Chem; 2008 Feb; 47(3):886-95. PubMed ID: 18181616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the electrochemical and spectroelectrochemical properties of diruthenium(III,II) complexes containing four identical unsymmetrical bridging ligands.
    Kadish KM; Wang LL; Thuriere A; Van Caemelbecke E; Bear JL
    Inorg Chem; 2003 Feb; 42(3):834-43. PubMed ID: 12562197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies and structures of trans-ruthenium(II) and ruthenium(III) bis(cyanide) complexes supported by a tetradentate macrocyclic tertiary amine ligand.
    Wong CY; Lee FW; Che CM; Cheng YF; Phillips DL; Zhu N
    Inorg Chem; 2008 Nov; 47(22):10308-16. PubMed ID: 18850698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes.
    Meyer TJ; Huynh MH
    Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of redox properties for the design of ruthenium anticancer drugs: part 2. Syntheses, crystal structures, and electrochemistry of potentially antitumor [Ru III/II Cl6-n(Azole)n]z(n = 3, 4, 6) complexes.
    Reisner E; Arion VB; Eichinger A; Kandler N; Giester G; Pombeiro AJ; Keppler BK
    Inorg Chem; 2005 Sep; 44(19):6704-16. PubMed ID: 16156629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing ruthenium-acetylide bonding interactions: synthesis, electrochemistry, and spectroscopic studies of acetylide-ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands.
    Wong CY; Che CM; Chan MC; Han J; Leung KH; Phillips DL; Wong KY; Zhu N
    J Am Chem Soc; 2005 Oct; 127(40):13997-4007. PubMed ID: 16201822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and reactivity of the aquation product of the antitumor complex trans-[Ru(III)Cl4(indazole)2]-.
    Cebrián-Losantos B; Reisner E; Kowol CR; Roller A; Shova S; Arion VB; Keppler BK
    Inorg Chem; 2008 Jul; 47(14):6513-23. PubMed ID: 18553904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.