BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24403988)

  • 1. Probing the mechanical properties of brain cancer cells using a microfluidic cell squeezer device.
    Khan ZS; Vanapalli SA
    Biomicrofluidics; 2013; 7(1):11806. PubMed ID: 24403988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device.
    Mirzaaghaian A; Ramiar A; Ranjbar AA; Warkiani ME
    J Biomech; 2020 Nov; 112():110066. PubMed ID: 33069965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A constriction channel analysis of astrocytoma stiffness and disease progression.
    Graybill PM; Bollineni RK; Sheng Z; Davalos RV; Mirzaeifar R
    Biomicrofluidics; 2021 Mar; 15(2):024103. PubMed ID: 33763160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments.
    Malboubi M; Jayo A; Parsons M; Charras G
    Microelectron Eng; 2015 Aug; 144():42-45. PubMed ID: 26412914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cell rheometry with a microfluidic constriction: Quantitative control of friction and fluid leaks between cell and channel walls.
    Preira P; Valignat MP; Bico J; Théodoly O
    Biomicrofluidics; 2013; 7(2):24111. PubMed ID: 24404016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing cell traction forces in confined microenvironments.
    Raman PS; Paul CD; Stroka KM; Konstantopoulos K
    Lab Chip; 2013 Dec; 13(23):4599-607. PubMed ID: 24100608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations.
    Jamieson EJ; Fewkes CJ; Berry JD; Dagastine RR
    J Colloid Interface Sci; 2019 May; 544():130-143. PubMed ID: 30831547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel.
    Chang CC; Wang K; Zhang Y; Chen D; Fan B; Hsieh CH; Wang J; Wu MH; Chen J
    Cytometry A; 2018 Aug; 93(8):822-828. PubMed ID: 30063818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating cell migration in vitro by the method based on cell patterning within microfluidic channels.
    Wang Y; Chen Z; Xiao L; Du Z; Han X; Yu X; Lu Y
    Electrophoresis; 2012 Mar; 33(5):773-9. PubMed ID: 22522534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical design of a microfluidic chip for probing mechanical properties of cells.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2019 Feb; 84():103-112. PubMed ID: 30591204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMS measurements of single cell stiffness decay due to cyclic mechanical loading.
    Barazani B; Warnat S; MacIntosh AJ; Hubbard T
    Biomed Microdevices; 2017 Aug; 19(4):77. PubMed ID: 28842775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell elasticity measurement using a microfluidic device with real-time pressure feedback.
    Chen Z; Zhu Y; Xu D; Alam MM; Shui L; Chen H
    Lab Chip; 2020 Jun; 20(13):2343-2353. PubMed ID: 32463051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leptomeningeal tissue: a barrier against brain tumor cell invasion.
    Pedersen PH; Rucklidge GJ; Mørk SJ; Terzis AJ; Engebraaten O; Lund-Johansen M; Backlund EO; Laerum OD; Bjerkvig R
    J Natl Cancer Inst; 1994 Nov; 86(21):1593-9. PubMed ID: 7932823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.