These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes. Çağlayan Z; Demircan Yalçın Y; Külah H Electrophoresis; 2020 Mar; 41(5-6):345-352. PubMed ID: 31925804 [TBL] [Abstract][Full Text] [Related]
6. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles. Gascoyne PR Anal Chem; 2009 Nov; 81(21):8878-85. PubMed ID: 19791772 [TBL] [Abstract][Full Text] [Related]
8. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Aghaamoo M; Aghilinejad A; Chen X; Xu J Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752 [TBL] [Abstract][Full Text] [Related]
9. Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis. Huang C; Smith JP; Saha TN; Rhim AD; Kirby BJ Biomicrofluidics; 2014 Jul; 8(4):044107. PubMed ID: 25379092 [TBL] [Abstract][Full Text] [Related]
10. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS. Yang J; Vykoukal J; Noshari J; Becker F; Gascoyne P; Krulevitch P; Fuller C; Ackler H; Hamilton J; Boser B; Eldredge A; Hitchens D; Andrews C Int J Adv Manuf Syst; 2000; 3(2):1-12. PubMed ID: 22025905 [TBL] [Abstract][Full Text] [Related]
11. An Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic System for the Isolation of High-Purity CD45 Liao CJ; Hsieh CH; Chiu TK; Zhu YX; Wang HM; Hung FC; Chou WP; Wu MH Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715062 [TBL] [Abstract][Full Text] [Related]
12. Isolation of rare cells from cell mixtures by dielectrophoresis. Gascoyne PR; Noshari J; Anderson TJ; Becker FF Electrophoresis; 2009 Apr; 30(8):1388-98. PubMed ID: 19306266 [TBL] [Abstract][Full Text] [Related]
13. Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Huang C; Liu H; Bander NH; Kirby BJ Biomed Microdevices; 2013 Dec; 15(6):941-8. PubMed ID: 23807279 [TBL] [Abstract][Full Text] [Related]
14. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977 [TBL] [Abstract][Full Text] [Related]
15. Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Yang J; Huang Y; Wang XB; Becker FF; Gascoyne PR Anal Chem; 1999 Mar; 71(5):911-8. PubMed ID: 10079757 [TBL] [Abstract][Full Text] [Related]
16. Dielectrophoresis-field flow fractionation for separation of particles: A critical review. Waheed W; Sharaf OZ; Alazzam A; Abu-Nada E J Chromatogr A; 2021 Jan; 1637():461799. PubMed ID: 33385744 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the role of the particle-wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices. Camarda M; Scalese S; La Magna A Electrophoresis; 2015 Jul; 36(13):1396-404. PubMed ID: 25487144 [TBL] [Abstract][Full Text] [Related]
18. The feasibility of using dielectrophoresis for isolation of glioblastoma subpopulations with increased stemness. Alinezhadbalalami N; Douglas TA; Balani N; Verbridge SS; Davalos RV Electrophoresis; 2019 Sep; 40(18-19):2592-2600. PubMed ID: 31127957 [TBL] [Abstract][Full Text] [Related]
19. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102 [TBL] [Abstract][Full Text] [Related]
20. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]