These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24403994)

  • 1. A pillar-based microfilter for isolation of white blood cells on elastomeric substrate.
    Alvankarian J; Bahadorimehr A; Yeop Majlis B
    Biomicrofluidics; 2013; 7(1):14102. PubMed ID: 24403994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood.
    Chen J; Chen D; Yuan T; Xie Y; Chen X
    Biomicrofluidics; 2013; 7(3):34106. PubMed ID: 24404026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications.
    Shao G; Lu D; Fu Z; Du D; Ozanich RM; Wang W; Lin Y
    Analyst; 2016 Jan; 141(1):206-15. PubMed ID: 26566573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon-based microfilters for whole blood cell separation.
    Ji HM; Samper V; Chen Y; Heng CK; Lim TM; Yobas L
    Biomed Microdevices; 2008 Apr; 10(2):251-7. PubMed ID: 17914675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of a polydimethylsiloxane device for evaluating the effect of pillar geometry and configuration in the flow separation using deterministic lateral displacement.
    Pandit P; Kong L; Samuel GL
    RSC Adv; 2024 Jan; 14(3):1563-1575. PubMed ID: 38179096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID).
    Mehendale N; Sharma O; Pandey S; Paul D
    Biomed Microdevices; 2018 Aug; 20(3):75. PubMed ID: 30120596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Passive Plasma Separation on OSTE Pillar Forest.
    Xiao Z; Sun L; Yang Y; Feng Z; Dai S; Yang H; Zhang X; Sheu CL; Guo W
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures.
    Čemažar J; Douglas TA; Schmelz EM; Davalos RV
    Biomicrofluidics; 2016 Jan; 10(1):014109. PubMed ID: 26858821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Radial Pillar Device (RAPID) for continuous and high-throughput separation of multi-sized particles.
    Mehendale N; Sharma O; D'Costa C; Paul D
    Biomed Microdevices; 2017 Nov; 20(1):6. PubMed ID: 29185049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous blood cell separation by hydrophoretic filtration.
    Choi S; Song S; Choi C; Park JK
    Lab Chip; 2007 Nov; 7(11):1532-8. PubMed ID: 17960282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phaseguide-assisted blood separation microfluidic device for point-of-care applications.
    Xu L; Lee H; Brasil Pinheiro MV; Schneider P; Jetta D; Oh KW
    Biomicrofluidics; 2015 Jan; 9(1):014106. PubMed ID: 25713688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood.
    Lu X; Tayebi M; Ai Y
    Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review.
    Alvankarian J; Majlis BY
    Sensors (Basel); 2015 Nov; 15(11):29685-701. PubMed ID: 26610519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping polymers for microfluidic devices and high pressure injections.
    Sollier E; Murray C; Maoddi P; Di Carlo D
    Lab Chip; 2011 Nov; 11(22):3752-65. PubMed ID: 21979377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.