These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24403999)
1. Paper pump for passive and programmable transport. Wang X; Hagen JA; Papautsky I Biomicrofluidics; 2013; 7(1):14107. PubMed ID: 24403999 [TBL] [Abstract][Full Text] [Related]
2. A passive and programmable 3D paper-based microfluidic pump for variable flow microfluidic applications. Shah SF; Jafry AT; Hussain G; Kazim AH; Ali M Biomicrofluidics; 2022 Dec; 16(6):064106. PubMed ID: 36536792 [TBL] [Abstract][Full Text] [Related]
5. A "place n play" modular pump for portable microfluidic applications. Li G; Luo Y; Chen Q; Liao L; Zhao J Biomicrofluidics; 2012 Mar; 6(1):14118-1411816. PubMed ID: 22685507 [TBL] [Abstract][Full Text] [Related]
6. A handy liquid metal based electroosmotic flow pump. Gao M; Gui L Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096 [TBL] [Abstract][Full Text] [Related]
7. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE. Kokalj T; Park Y; Vencelj M; Jenko M; Lee LP Lab Chip; 2014 Nov; 14(22):4329-33. PubMed ID: 25231831 [TBL] [Abstract][Full Text] [Related]
8. A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics. Gucluer S Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512720 [TBL] [Abstract][Full Text] [Related]
9. A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping. Yen PW; Lin SC; Huang YC; Huang YJ; Tung YC; Lu SS; Lin CT Sci Rep; 2019 Oct; 9(1):14794. PubMed ID: 31616031 [TBL] [Abstract][Full Text] [Related]
11. Self-powered infusion microfluidic pump for ex vivo drug delivery. Dal Dosso F; Kokalj T; Belotserkovsky J; Spasic D; Lammertyn J Biomed Microdevices; 2018 May; 20(2):44. PubMed ID: 29850951 [TBL] [Abstract][Full Text] [Related]
12. Open-source spring-driven syringe pump with 3D-printed components for microfluidic applications. Park SB; Shin JH HardwareX; 2024 Sep; 19():e00550. PubMed ID: 39104615 [TBL] [Abstract][Full Text] [Related]
13. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. Resto PJ; Berthier E; Beebe DJ; Williams JC Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561 [TBL] [Abstract][Full Text] [Related]
14. An open-source programmable smart pipette for portable cell separation and counting. Lee E; Kim B; Choi S RSC Adv; 2019 Dec; 9(71):41877-41885. PubMed ID: 35541629 [TBL] [Abstract][Full Text] [Related]
15. Flow control in a laminate capillary-driven microfluidic device. Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316 [TBL] [Abstract][Full Text] [Related]
16. Development of Active Centrifugal Pump for Microfluidic CD Platforms. Al-Halhouli A; Far BE; Albagdady A; Al-Faqheri W Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012735 [TBL] [Abstract][Full Text] [Related]
19. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics. Vasilakis N; Papadimitriou KI; Morgan H; Prodromakis T Microfluid Nanofluidics; 2017; 21(6):103. PubMed ID: 32025228 [TBL] [Abstract][Full Text] [Related]
20. Acoustic Atomization-Induced Pumping Based on a Vibrating Sharp-Tip Capillary. Mendis BL; He Z; Li X; Wang J; Li C; Li P Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]