These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 24404033)
1. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel. Jiang D; Sun D; Xiang N; Chen K; Yi H; Ni Z Biomicrofluidics; 2013; 7(3):34113. PubMed ID: 24404033 [TBL] [Abstract][Full Text] [Related]
2. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio. Shen S; Gao M; Zhang F; Niu Y Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33466925 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods. Alizadeh A; Wang JK; Pooyan S; Mirbozorgi SA; Wang M J Colloid Interface Sci; 2013 Oct; 407():546-55. PubMed ID: 23859813 [TBL] [Abstract][Full Text] [Related]
4. Mesoscopic Fluid-Particle Flow and Vortex Structural Transmission in a Submerged Entry Nozzle of Continuous Caster. Zhao P; Piao R; Zou Z Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407842 [TBL] [Abstract][Full Text] [Related]
5. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Ansari MA; Kim KY; Kim SM Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137 [TBL] [Abstract][Full Text] [Related]
6. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows. Hejranfar K; Hajihassanpour M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733 [TBL] [Abstract][Full Text] [Related]
7. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel. Wang C; Song Y; Pan X Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307 [TBL] [Abstract][Full Text] [Related]
8. Filter-matrix lattice Boltzmann model for microchannel gas flows. Zhuo C; Zhong C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383 [TBL] [Abstract][Full Text] [Related]
9. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays. Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309 [TBL] [Abstract][Full Text] [Related]
10. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves. Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066 [TBL] [Abstract][Full Text] [Related]
11. Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters. Wang Y; Talukder N; Nunna BB; Lee ES Biomicrofluidics; 2024 Jan; 18(1):014104. PubMed ID: 38343650 [TBL] [Abstract][Full Text] [Related]
12. Simulation of High-Viscosity Generalized Newtonian Fluid Flows in the Mixing Section of a Screw Extruder Using the Lattice Boltzmann Model. Liu L; Meng Z; Zhang Y; Sun Y ACS Omega; 2023 Dec; 8(50):47991-48018. PubMed ID: 38144068 [TBL] [Abstract][Full Text] [Related]
13. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays. Zhao Q; Yan S; Yuan D; Zhang J; Du H; Alici G; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1406-1412. PubMed ID: 28809710 [TBL] [Abstract][Full Text] [Related]
14. Flow of Non-Newtonian Fluids in a Single-Cavity Microchannel. Raihan MK; Jagdale PP; Wu S; Shao X; Bostwick JB; Pan X; Xuan X Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357246 [TBL] [Abstract][Full Text] [Related]
15. Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature. Feiger B; Vardhan M; Gounley J; Mortensen M; Nair P; Chaudhury R; Frakes D; Randles A Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3198. PubMed ID: 30838793 [TBL] [Abstract][Full Text] [Related]
16. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study. Xue Y; Hellmuth R; Shin DH Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327 [TBL] [Abstract][Full Text] [Related]
17. Microchannel Gas Flow in the Multi-Flow Regime Based on the Lattice Boltzmann Method. Li X; Ning Z; Lü M Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38248209 [TBL] [Abstract][Full Text] [Related]
18. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128 [TBL] [Abstract][Full Text] [Related]
19. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes. Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543 [TBL] [Abstract][Full Text] [Related]
20. Simulation of Water Flow in a Nanochannel with a Sudden Contraction or Expansion. Zhang T; Zhang B; Zhao Y; Javadpour F; He X; Ge F; Wu J; Zhang D Langmuir; 2022 May; 38(21):6720-6730. PubMed ID: 35584361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]