These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24404050)

  • 1. Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies.
    Liu Z; Shum HC
    Biomicrofluidics; 2013; 7(4):44117. PubMed ID: 24404050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles.
    Chen QL; Liu Z; Shum HC
    Biomicrofluidics; 2014 Nov; 8(6):064112. PubMed ID: 25553189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach.
    Ahmed H; Stokke BT
    Lab Chip; 2021 Jun; 21(11):2232-2243. PubMed ID: 33903873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-compartment CNS neuron-glia Co-culture microfluidic platform.
    Park J; Koito H; Li J; Han A
    J Vis Exp; 2009 Sep; (31):. PubMed ID: 19745806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of 3D concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified affinity assays.
    Destgeer G; Ouyang M; Wu CY; Di Carlo D
    Lab Chip; 2020 Oct; 20(19):3503-3514. PubMed ID: 32895694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants.
    Chen D; Amstad E; Zhao CX; Cai L; Fan J; Chen Q; Hai M; Koehler S; Zhang H; Liang F; Yang Z; Weitz DA
    ACS Nano; 2017 Dec; 11(12):11978-11985. PubMed ID: 29202218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 9. On-chip preparation of calcium alginate particles based on droplet templates formed by using a centrifugal microfluidic technique.
    Liu M; Sun XT; Yang CG; Xu ZR
    J Colloid Interface Sci; 2016 Mar; 466():20-7. PubMed ID: 26704472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to producing uniform 3-D tumor spheroid constructs using ultrasound treatment.
    Karamikamkar S; Behzadfar E; Cheung KC
    Biomed Microdevices; 2018 Mar; 20(2):27. PubMed ID: 29511829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of hASCs-laden structures using extrusion-based cell printing supplemented with an electric field.
    Yeo M; Ha J; Lee H; Kim G
    Acta Biomater; 2016 Jul; 38():33-43. PubMed ID: 27095485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array.
    Sugiura S; Oda T; Aoyagi Y; Satake M; Ohkohchi N; Nakajima M
    Lab Chip; 2008 Aug; 8(8):1255-7. PubMed ID: 18651064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary.
    Maeda K; Onoe H; Takinoue M; Takeuchi S
    Adv Mater; 2012 Mar; 24(10):1340-6. PubMed ID: 22311473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study.
    Park J; Koito H; Li J; Han A
    Lab Chip; 2012 Sep; 12(18):3296-304. PubMed ID: 22828584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency.
    Guo J; Giusti MM; Kaletunç G
    Food Res Int; 2018 May; 107():414-422. PubMed ID: 29580503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lotus leaf-inspired design of calcium alginate particles with superhigh drug encapsulation efficiency and pH responsive release.
    Song B
    Colloids Surf B Biointerfaces; 2018 Dec; 172():464-470. PubMed ID: 30199763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic focusing of beads and cells in hydrogel droplets.
    Fornell A; Pohlit H; Shi Q; Tenje M
    Sci Rep; 2021 Apr; 11(1):7479. PubMed ID: 33820916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.