These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24404059)

  • 41. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.
    Dai Y; Du J; Yang Q; Zhang J
    Bioelectromagnetics; 2014 Sep; 35(6):385-95. PubMed ID: 24764269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells.
    Liu J; Qiang Y; Alvarez O; Du E
    Sens Actuators B Chem; 2018 Feb; 255(Pt 2):2392-2398. PubMed ID: 29731543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform.
    Lei KF; Ho YC; Huang CH; Huang CH; Pai PC
    Talanta; 2021 Jul; 229():122259. PubMed ID: 33838770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Some early results related to electrical impedance of normal and abnormal gastric tissue.
    Keshtkar A; Salehnia Z; Somi MH; Eftekharsadat AT
    Phys Med; 2012 Jan; 28(1):19-24. PubMed ID: 21334938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip.
    De Ninno A; Reale R; Giovinazzo A; Bertani FR; Businaro L; Bisegna P; Matteucci C; Caselli F
    Biosens Bioelectron; 2020 Feb; 150():111887. PubMed ID: 31780405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate.
    Syed H; Borsic A; Hartov A; Halter RJ
    Physiol Meas; 2012 May; 33(5):719-38. PubMed ID: 22532339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of electrical impedance spectroscopy sensing surgical drill using computational modelling and experimental validation.
    Devaraj H; K Murphy E; J Halter R
    Biomed Phys Eng Express; 2022 Dec; 9(1):. PubMed ID: 36322960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography.
    Blad B; Baldetorp B
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A105-15. PubMed ID: 9001609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-Frequency Impedance-Based Cell Discrimination Considering Ion Transport Model in Cell Suspension.
    Kawashima D; Li S; Obara H; Takei M
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1015-1023. PubMed ID: 32746028
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing.
    Wang L; Zhu J; Deng C; Xing WL; Cheng J
    Lab Chip; 2008 Jun; 8(6):872-8. PubMed ID: 18497905
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure.
    Noh S; Kim H
    Lab Chip; 2020 May; 20(10):1751-1761. PubMed ID: 32347229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.
    Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS
    Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classification between Normal and Cancerous Human Urothelial Cells by Using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning.
    Jeong HJ; Kim K; Kim HW; Park Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of Impedance Measurement Sensitivity of Cell Growth on Sensing Area of Circular Interdigitated Electrode.
    Park J; Hwang KS; Cho S
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7886-90. PubMed ID: 26726434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.
    Lymperopoulos G; Lymperopoulos P; Alikari V; Dafogianni C; Zyga S; Margari N
    Adv Exp Med Biol; 2017; 989():109-117. PubMed ID: 28971420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes.
    Rahman AR; Lo CM; Bhansali S
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881
    [TBL] [Abstract][Full Text] [Related]  

  • 59. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A microchip integrating cell array positioning with in situ single-cell impedance measurement.
    Guo X; Zhu R; Zong X
    Analyst; 2015 Oct; 140(19):6571-8. PubMed ID: 26282920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.