These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24404071)

  • 1. Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems.
    Xu X; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(5):54108. PubMed ID: 24404071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Low Shear Flow-based Trapping of Biological Entities.
    Sohrabi Kashani A; Packirisamy M
    Sci Rep; 2019 Apr; 9(1):5511. PubMed ID: 30940862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of microfluidic microsphere-trap arrays.
    Xu X; Sarder P; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(1):14112. PubMed ID: 24404004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Modeling of Physical Cell Trapping in Microfluidic Chips.
    Cardona S; Mostafazadeh N; Luan Q; Zhou J; Peng Z; Papautsky I
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.
    Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S
    Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamline based design guideline for deterministic microfluidic hydrodynamic single cell traps.
    Guan A; Shenoy A; Smith R; Li Z
    Biomicrofluidics; 2015 Mar; 9(2):024103. PubMed ID: 25825618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic device enabling high-efficiency single cell trapping.
    Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH
    Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing.
    Lipp C; Uning K; Cottet J; Migliozzi D; Bertsch A; Renaud P
    Lab Chip; 2021 Sep; 21(19):3686-3694. PubMed ID: 34518854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of microscale hydraulic jump phenomenon for hydrodynamic trap-and-release of microparticles.
    Park Y; Choi Y; Mitra D; Kang T; Lee LP
    Appl Phys Lett; 2010 Oct; 97(15):154101. PubMed ID: 21057671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenge in particle delivery to cells in a microfluidic device.
    Moghadas H; Saidi MS; Kashaninejad N; Nguyen NT
    Drug Deliv Transl Res; 2018 Jun; 8(3):830-842. PubMed ID: 29270808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.