These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24404158)

  • 41. Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons.
    Jiang S; Xie F; Lu H; Liu J; Yan C
    Environ Sci Pollut Res Int; 2017 May; 24(13):12484-12493. PubMed ID: 28361402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content.
    Wu F; Tian K; Wang J; Bao H; Luo W; Zhang H; Hong H
    Ecotoxicol Environ Saf; 2019 Nov; 183():109567. PubMed ID: 31442802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs).
    Lehto KM; Puhakka JA; Lemmetyinen H
    Biodegradation; 2003 Aug; 14(4):249-63. PubMed ID: 12948055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous fluorimetric determination of the biodegradation processes of dissolved multi-component PAHs.
    Sang LZ; Wei XY; Chen JN; Zhu YX; Zhang Y
    Talanta; 2009 Jun; 78(4-5):1339-44. PubMed ID: 19362198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments.
    Yu KS; Wong AH; Yau KW; Wong YS; Tam NF
    Mar Pollut Bull; 2005; 51(8-12):1071-7. PubMed ID: 16023146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Mn(IV) on the biodegradation of polycyclic aromatic hydrocarbons under low-oxygen condition in mangrove sediment slurry.
    Li CH; Ye C; Wong YS; Tam NF
    J Hazard Mater; 2011 Jun; 190(1-3):786-93. PubMed ID: 21514997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1A1: a CO flash photolysis study.
    Koley AP; Buters JT; Robinson RC; Markowitz A; Friedman FK
    Arch Biochem Biophys; 1996 Dec; 336(2):261-7. PubMed ID: 8954573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza.
    Naidoo G; Naidoo K
    Mar Pollut Bull; 2016 Dec; 113(1-2):193-199. PubMed ID: 27634737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane.
    Ohura T; Amagai T; Makino M
    Chemosphere; 2008 Feb; 70(11):2110-7. PubMed ID: 17936329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhizodegradation gradients of phenanthrene and pyrene in sediment of mangrove (Kandelia candel (L.) Druce).
    Lu H; Zhang Y; Liu B; Liu J; Ye J; Yan C
    J Hazard Mater; 2011 Nov; 196():263-9. PubMed ID: 21963261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photolysis of polycyclic aromatic hydrocarbons adsorbed on polyethylene microplastics.
    Noro K; Yabuki Y
    Mar Pollut Bull; 2021 Aug; 169():112561. PubMed ID: 34089963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene.
    Sartoros C; Yerushalmi L; Béron P; Guiot SR
    Chemosphere; 2005 Nov; 61(7):1042-50. PubMed ID: 16197980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of anthracene and pyrene supplied by microcrystals and non-aqueous-phase liquids.
    Mutnuri S; Vasudevan N; Kaestner M
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):569-76. PubMed ID: 15729557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact.
    Tian L; Yin S; Ma Y; Kang H; Zhang X; Tan H; Meng H; Liu C
    Sci Total Environ; 2019 Feb; 652():1149-1155. PubMed ID: 30586802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1.
    Arulazhagan P; Vasudevan N
    Mar Pollut Bull; 2011 Feb; 62(2):388-94. PubMed ID: 20934193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.
    Guan GF; Wang YS; Cheng H; Jiang ZY; Fei J
    Ecotoxicology; 2015 Oct; 24(7-8):1668-76. PubMed ID: 25956979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.
    Sanches S; Leitão C; Penetra A; Cardoso VV; Ferreira E; Benoliel MJ; Crespo MT; Pereira VJ
    J Hazard Mater; 2011 Sep; 192(3):1458-65. PubMed ID: 21784577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.
    Kim PG; Roh JY; Hong Y; Kwon JH
    Chemosphere; 2017 Oct; 184():86-92. PubMed ID: 28582767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative Proteomic Analysis Reveals the Regulatory Effects of H
    Liu YL; Shen ZJ; Simon M; Li H; Ma DN; Zhu XY; Zheng HL
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs) by a Newly Isolated Strain from Oilfield Produced Water.
    Qi YB; Wang CY; Lv CY; Lun ZM; Zheng CG
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28241412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.