BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24404769)

  • 1. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies.
    Patra M; Mitra M; Chakrabarti A; Mukhopadhyay C
    J Biomol Struct Dyn; 2014; 32(6):852-65. PubMed ID: 24404769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
    Bhattacharyya M; Ray S; Bhattacharya S; Chakrabarti A
    J Biol Chem; 2004 Dec; 279(53):55080-8. PubMed ID: 15492010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of hemin, hematoporphyrin, and protoporphyrin with erythroid spectrin: fluorescence and molecular docking studies.
    Das D; Patra M; Chakrabarti A
    Eur Biophys J; 2015 Apr; 44(3):171-82. PubMed ID: 25737232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence of spectrin-bound prodan.
    Chakrabarti A
    Biochem Biophys Res Commun; 1996 Sep; 226(2):495-7. PubMed ID: 8806662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and dynamics of tryptophan residues in brain spectrin: novel insight into conformational flexibility.
    Mitra M; Chaudhuri A; Patra M; Mukhopadhyay C; Chakrabarti A; Chattopadhyay A
    J Fluoresc; 2015 May; 25(3):707-17. PubMed ID: 25835748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of Prodan for the self-associating domain of spectrin: a molecular docking study.
    Bhattacharya M; Mukhopadhyay C; Chakrabarti A
    J Biomol Struct Dyn; 2006 Dec; 24(3):269-76. PubMed ID: 17054385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localizing the chaperone activity of erythroid spectrin.
    Bose D; Chakrabarti A
    Cytoskeleton (Hoboken); 2019 Jun; 76(6):383-397. PubMed ID: 31397976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin.
    Kennedy SP; Warren SL; Forget BG; Morrow JS
    J Cell Biol; 1991 Oct; 115(1):267-77. PubMed ID: 1833409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Prodan with tubulin. A fluorescence spectroscopic study.
    Mazumdar M; Parrack PK; Bhattacharyya B
    Eur J Biochem; 1992 Feb; 204(1):127-32. PubMed ID: 1740122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational study of spectrin in presence of submolar concentrations of denaturants.
    Ray S; Bhattacharyya M; Chakrabarti A
    J Fluoresc; 2005 Jan; 15(1):61-70. PubMed ID: 15711878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational effects at the tetramerization site of nonerythroid alpha spectrin.
    Sumandea CA; Fung LW
    Brain Res Mol Brain Res; 2005 May; 136(1-2):81-90. PubMed ID: 15893590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of erythroid and nonerythroid spectrin transcripts in human lens and cerebellum.
    Yoon SH; Skalka H; Prchal JT
    Invest Ophthalmol Vis Sci; 1989 Aug; 30(8):1860-6. PubMed ID: 2474519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2).
    Lombardo CR; Weed SA; Kennedy SP; Forget BG; Morrow JS
    J Biol Chem; 1994 Nov; 269(46):29212-9. PubMed ID: 7961888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-binding role of betaII-spectrin ankyrin-binding domain.
    Bok E; Plazuk E; Hryniewicz-Jankowska A; Chorzalska A; Szmaj A; Dubielecka PM; Stebelska K; Diakowski W; Lisowski M; Langner M; Sikorski AF
    Cell Biol Int; 2007 Dec; 31(12):1482-94. PubMed ID: 17716929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs.
    Song Y; Antoniou C; Memic A; Kay BK; Fung LW
    Protein Sci; 2011 May; 20(5):867-79. PubMed ID: 21412925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.
    Patra M; Mukhopadhyay C; Chakrabarti A
    PLoS One; 2015; 10(1):e0116991. PubMed ID: 25617632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
    Chattopadhyay A; Rawat SS; Kelkar DA; Ray S; Chakrabarti A
    Protein Sci; 2003 Nov; 12(11):2389-403. PubMed ID: 14573853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrin organization and dynamics: new insights.
    Chakrabarti A; Kelkar DA; Chattopadhyay A
    Biosci Rep; 2006 Dec; 26(6):369-86. PubMed ID: 17029004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of ANS fluorescent probes to identify hydrophobic sites on the surface of DREAM.
    Gonzalez WG; Miksovska J
    Biochim Biophys Acta; 2014 Sep; 1844(9):1472-80. PubMed ID: 24854592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the calmodulin-binding site of nonerythroid alpha-spectrin. Recombinant protein and model peptide studies.
    Leto TL; Pleasic S; Forget BG; Benz EJ; Marchesi VT
    J Biol Chem; 1989 Apr; 264(10):5826-30. PubMed ID: 2647727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.