BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24404835)

  • 1. Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers.
    Kabasakalis A; Tsalis G; Zafrana E; Loupos D; Mougios V
    J Sports Sci; 2014; 32(8):747-56. PubMed ID: 24404835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sprint interval exercise dose and sex on circulating irisin and redox status markers in adolescent swimmers.
    Kabasakalis A; Nikolaidis S; Tsalis G; Christoulas K; Mougios V
    J Sports Sci; 2019 Apr; 37(7):827-832. PubMed ID: 30306821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.
    Venditti P; Di Meo S
    Int J Sports Med; 1997 Oct; 18(7):497-502. PubMed ID: 9414071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood oxidative stress markers after ultramarathon swimming.
    Kabasakalis A; Kyparos A; Tsalis G; Loupos D; Pavlidou A; Kouretas D
    J Strength Cond Res; 2011 Mar; 25(3):805-11. PubMed ID: 20613649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No indications of persistent oxidative stress in response to an ironman triathlon.
    Neubauer O; König D; Kern N; Nics L; Wagner KH
    Med Sci Sports Exerc; 2008 Dec; 40(12):2119-28. PubMed ID: 18981936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress.
    Bloomer RJ; Goldfarb AH; Wideman L; McKenzie MJ; Consitt LA
    J Strength Cond Res; 2005 May; 19(2):276-85. PubMed ID: 15903362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The type and intensity of exercise have independent and additive effects on bone mineral density.
    Magkos F; Yannakoulia M; Kavouras SA; Sidossis LS
    Int J Sports Med; 2007 Sep; 28(9):773-9. PubMed ID: 17455122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of plasma lactate elevation and proteinuria by a complex dietary supplement in swimmers during over-loading training.
    Sós C
    Acta Physiol Hung; 2004; 91(3-4):211-9. PubMed ID: 16438115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged depletion of antioxidant capacity after ultraendurance exercise.
    Turner JE; Hodges NJ; Bosch JA; Aldred S
    Med Sci Sports Exerc; 2011 Sep; 43(9):1770-6. PubMed ID: 22534974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is it more effective for highly trained swimmers to live and train at 1200 m than at 1850 m in terms of performance and haematological benefits?
    Roels B; Hellard P; Schmitt L; Robach P; Richalet JP; Millet GP
    Br J Sports Med; 2006 Feb; 40(2):e4. PubMed ID: 16431991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effects of long term dietary restriction on swimming exercise-induced oxidative stress in the liver, heart and kidney of rat.
    Aydin C; Ince E; Koparan S; Cangul IT; Naziroglu M; Ak F
    Cell Biochem Funct; 2007; 25(2):129-37. PubMed ID: 16143963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body composition and hydration status changes in male and female open-water swimmers during an ultra-endurance event.
    Weitkunat T; Knechtle B; Knechtle P; Rüst CA; Rosemann T
    J Sports Sci; 2012; 30(10):1003-13. PubMed ID: 22554315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total blood volume in endurance-trained postmenopausal females: relation to exercise mode and maximal aerobic capacity.
    Parker Jones P; Davy KP; Desouza CA; Tanaka H
    Acta Physiol Scand; 1999 Aug; 166(4):327-33. PubMed ID: 10468670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase.
    Neubauer O; Reichhold S; Nics L; Hoelzl C; Valentini J; Stadlmayr B; Knasmüller S; Wagner KH
    Br J Nutr; 2010 Oct; 104(8):1129-38. PubMed ID: 20637132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of blood volume changes on leucocyte and lymphocyte subpopulations in elite swimmers following interval training of varying intensities.
    Kargotich S; Keast D; Goodman C; Crawford GP; Morton AR
    Int J Sports Med; 1997 Jul; 18(5):373-80. PubMed ID: 9298779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of diurnal variation in sub-maximal swimming.
    Martin L; Thompson K
    Int J Sports Med; 2000 Aug; 21(6):387-92. PubMed ID: 10961512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox, iron, and nutritional status of children during swimming training.
    Kabasakalis A; Kalitsis K; Nikolaidis MG; Tsalis G; Kouretas D; Loupos D; Mougios V
    J Sci Med Sport; 2009 Nov; 12(6):691-6. PubMed ID: 18768362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination and validity of critical swimming velocity in elite physically disabled swimmers.
    Garatachea N; Abadía O; García-Isla FJ; Sarasa FJ; Bresciani G; González-Gallego J; De Paz JA
    Disabil Rehabil; 2006 Dec; 28(24):1551-6. PubMed ID: 17178618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between lactate minimum and critical speed throughout childhood and adolescence in swimmers.
    Mezzaroba PV; Papoti M; Machado FA
    Pediatr Exerc Sci; 2014 Aug; 26(3):274-80. PubMed ID: 25050986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate variability and performance at two different altitudes in well-trained swimmers.
    Schmitt L; Hellard P; Millet GP; Roels B; Richalet JP; Fouillot JP
    Int J Sports Med; 2006 Mar; 27(3):226-31. PubMed ID: 16541379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.