BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24404838)

  • 1. An integrated approach (CLuster Analysis Integration Method) to combine expression data and protein-protein interaction networks in agrigenomics: application on Arabidopsis thaliana.
    Santoni D; Swiercz A; Zmieńko A; Kasprzak M; Blazewicz M; Bertolazzi P; Felici G
    OMICS; 2014 Feb; 18(2):155-65. PubMed ID: 24404838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.
    Wada M; Takahashi H; Altaf-Ul-Amin M; Nakamura K; Hirai MY; Ohta D; Kanaya S
    Gene; 2012 Jul; 503(1):56-64. PubMed ID: 22561113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
    Li J; Li X; Su H; Chen H; Galbraith DW
    Bioinformatics; 2006 Aug; 22(16):2037-43. PubMed ID: 16820427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Shortest-Path-Based Method for the Analysis and Prediction of Fruit-Related Genes in Arabidopsis thaliana.
    Zhu L; Zhang YH; Su F; Chen L; Huang T; Cai YD
    PLoS One; 2016; 11(7):e0159519. PubMed ID: 27434024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data integration for plant genomics--exemplars from the integration of Arabidopsis thaliana databases.
    Lysenko A; Hindle MM; Taubert J; Saqi M; Rawlings CJ
    Brief Bioinform; 2009 Nov; 10(6):676-93. PubMed ID: 19933213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CORNET 2.0: integrating plant coexpression, protein-protein interactions, regulatory interactions, gene associations and functional annotations.
    De Bodt S; Hollunder J; Nelissen H; Meulemeester N; Inzé D
    New Phytol; 2012 Aug; 195(3):707-720. PubMed ID: 22651224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.
    Amrine KC; Blanco-Ulate B; Cantu D
    PLoS One; 2015; 10(3):e0118731. PubMed ID: 25730421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A guide to CORNET for the construction of coexpression and protein-protein interaction networks.
    De Bodt S; Inzé D
    Methods Mol Biol; 2013; 1011():327-43. PubMed ID: 23616008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis.
    Lysenko A; Defoin-Platel M; Hassani-Pak K; Taubert J; Hodgman C; Rawlings CJ; Saqi M
    BMC Bioinformatics; 2011 May; 12():203. PubMed ID: 21612636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of metagenes and their interactions through large-scale analysis of Arabidopsis gene expression data.
    Wilson TJ; Lai L; Ban Y; Ge SX
    BMC Genomics; 2012 Jun; 13():237. PubMed ID: 22694750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of gene expression profiling revealed that COP9 signalosome is essential for correct expression of Fe homeostasis genes in Arabidopsis.
    Eroglu S; Aksoy E
    Biometals; 2017 Oct; 30(5):685-698. PubMed ID: 28744713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm.
    Mutwil M; Usadel B; Schütte M; Loraine A; Ebenhöh O; Persson S
    Plant Physiol; 2010 Jan; 152(1):29-43. PubMed ID: 19889879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks.
    Liesecke F; Daudu D; Dugé de Bernonville R; Besseau S; Clastre M; Courdavault V; de Craene JO; Crèche J; Giglioli-Guivarc'h N; Glévarec G; Pichon O; Dugé de Bernonville T
    Sci Rep; 2018 Jul; 8(1):10885. PubMed ID: 30022075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network.
    Atias O; Chor B; Chamovitz DA
    BMC Syst Biol; 2009 Sep; 3():86. PubMed ID: 19728874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana.
    Xu F; Li G; Zhao C; Li Y; Li P; Cui J; Deng Y; Shi T
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S2. PubMed ID: 21047383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic identification of functional plant modules through the integration of complementary data sources.
    Heyndrickx KS; Vandepoele K
    Plant Physiol; 2012 Jul; 159(3):884-901. PubMed ID: 22589469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HRGRN: A Graph Search-Empowered Integrative Database of Arabidopsis Signaling Transduction, Metabolism and Gene Regulation Networks.
    Dai X; Li J; Liu T; Zhao PX
    Plant Cell Physiol; 2016 Jan; 57(1):e12. PubMed ID: 26657893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes.
    Barah P; Jayavelu ND; Rasmussen S; Nielsen HB; Mundy J; Bones AM
    BMC Genomics; 2013 Oct; 14():722. PubMed ID: 24148294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions.
    Carrera J; Rodrigo G; Jaramillo A; Elena SF
    Genome Biol; 2009; 10(9):R96. PubMed ID: 19754933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.