These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24404888)

  • 1. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation and measurement of trapping stiffness in femtosecond optical tweezers.
    Li Y; Qin Y; Wang H; Huang L; Guo H; Jiang Y
    Opt Express; 2024 Mar; 32(7):12358-12367. PubMed ID: 38571060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers.
    Xu H; Jones S; Choi BC; Gordon R
    Nano Lett; 2016 Apr; 16(4):2639-43. PubMed ID: 26977716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins.
    Ravindranath AL; Shariatdoust MS; Mathew S; Gordon R
    Opt Express; 2019 May; 27(11):16184-16194. PubMed ID: 31163802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
    Melzer JE; McLeod E
    ACS Nano; 2018 Mar; 12(3):2440-2447. PubMed ID: 29400940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles.
    Conteduca D; Khan SN; Martínez Ruiz MA; Bruce GD; Krauss TF; Dholakia K
    ACS Photonics; 2023 Dec; 10(12):4322-4328. PubMed ID: 38145167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping of sub-millimeter sized particles and microorganisms.
    Lialys L; Lialys J; Salandrino A; Ackley BD; Fardad S
    Sci Rep; 2023 May; 13(1):8615. PubMed ID: 37244967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed nanoscale optical trapping with plasmonic double nanohole aperture.
    Anyika T; Hong C; Ndukaife JC
    Nanoscale; 2023 Jun; 15(22):9710-9717. PubMed ID: 37132641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single and dual fiber nano-tip optical tweezers: trapping and analysis.
    Decombe JB; Huant S; Fick J
    Opt Express; 2013 Dec; 21(25):30521-31. PubMed ID: 24514629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the strength of an optical trap by truncation.
    Rodrigues VR; Mondal A; Dharmadhikari JA; Panigrahi S; Mathur D; Dharmadhikari AK
    PLoS One; 2013; 8(4):e61310. PubMed ID: 23593458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles.
    Gelfand RM; Wheaton S; Gordon R
    Opt Lett; 2014 Nov; 39(22):6415-7. PubMed ID: 25490482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.