BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24405031)

  • 1. Disruption of vector transmission by a plant-expressed viral glycoprotein.
    Montero-AstĂșa M; Rotenberg D; Leach-Kieffaber A; Schneweis BA; Park S; Park JK; German TL; Whitfield AE
    Mol Plant Microbe Interact; 2014 Mar; 27(3):296-304. PubMed ID: 24405031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Plant Virus Tomato Spotted Wilt Orthotospovirus Benefits Its Vector
    Zhang Z; Zhang J; Li X; Zhang J; Wang Y; Lu Y
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multigenic Hairpin Transgenes in Tomato Confer Resistance to Multiple Orthotospoviruses Including Sw-5 Resistance-Breaking Tomato Spotted Wilt Virus.
    Oliver JE; Rotenberg D; Agosto-Shaw K; McInnes HA; Lahre KA; Mulot M; Adkins S; Whitfield AE
    Phytopathology; 2024 May; 114(5):1137-1149. PubMed ID: 37856697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virus-vectoring thrips regulate the excessive multiplication of tomato spotted wilt virus using their antiviral immune responses.
    Mandal E; Khan F; Kil EJ; Kim Y
    J Gen Virol; 2024 May; 105(5):. PubMed ID: 38717918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of tomato spotted wilt virus G
    Bahat Y; Alter J; Dessau M
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26237-26244. PubMed ID: 33020295
    [No Abstract]   [Full Text] [Related]  

  • 6. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance.
    Ma H; Song C; Borth W; Sether D; Melzer M; Hu J
    BMC Biotechnol; 2011 Oct; 11():96. PubMed ID: 22014312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN.
    Whitfield AE; Ullman DE; German TL
    J Virol; 2004 Dec; 78(23):13197-206. PubMed ID: 15542672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrips tabaci population genetic structure and polyploidy in relation to competency as a vector of tomato spotted wilt virus.
    Jacobson AL; Booth W; Vargo EL; Kennedy GG
    PLoS One; 2013; 8(1):e54484. PubMed ID: 23365671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence.
    Westmore GC; Poke FS; Allen GR; Wilson CR
    Heredity (Edinb); 2013 Sep; 111(3):210-5. PubMed ID: 23632893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering and cellular distribution characteristics of virus particles of Tomato spotted wilt virus and Tomato zonate spot virus in different plant hosts.
    Zhang Z; Zheng K; Dong J; Fang Q; Hong J; Wang X
    Virol J; 2016 Jan; 13():11. PubMed ID: 26786326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.
    Ogada PA; Moualeu DP; Poehling HM
    PLoS One; 2016; 11(5):e0154533. PubMed ID: 27159134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus.
    Zheng Y; Feng Y; Li Z; Wang J
    Arch Insect Biochem Physiol; 2024 Mar; 115(3):e22102. PubMed ID: 38500452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Isoform of the Eukaryotic Translation Elongation Factor 1A (eEF1a) Acts as a Pro-Viral Factor Required for Tomato Spotted Wilt Virus Disease in
    Helderman TA; Deurhof L; Bertran A; Boeren S; Fokkens L; Kormelink R; Joosten MHAJ; Prins M; van den Burg HA
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strains of a pandemic plant virus, tomato spotted wilt orthotospovirus, increase vector fitness and modulate virus transmission in a resistant host.
    Chinnaiah S; Gautam S; Herron B; Workneh F; Rush CM; Gadhave KR
    Front Microbiol; 2023; 14():1257724. PubMed ID: 37840712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Ordaz NA; Nagalakshmi U; Boiteux LS; Atamian HS; Ullman DE; Dinesh-Kumar SP
    Mol Plant Microbe Interact; 2023 Nov; 36(11):705-715. PubMed ID: 37432156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receiver Operating Characteristic curve analysis determines association of individual potato foliage volatiles with onion thrips preference, cultivar and plant age.
    Wilson CR; Davies NW; Corkrey R; Wilson AJ; Mathews AM; Westmore GC
    PLoS One; 2017; 12(7):e0181831. PubMed ID: 28746359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific insect-virus interactions are responsible for variation in competency of different Thrips tabaci isolines to transmit different Tomato Spotted Wilt Virus isolates.
    Jacobson AL; Kennedy GG
    PLoS One; 2013; 8(1):e54567. PubMed ID: 23358707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrips and tospoviruses come of age: mapping determinants of insect transmission.
    Ullman DE; Whitfield AE; German TL
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4931-2. PubMed ID: 15795369
    [No Abstract]   [Full Text] [Related]  

  • 19. Variation within Lactuca spp. for Resistance to Impatiens necrotic spot virus.
    Simko I; Richardson CE; Wintermantel WM
    Plant Dis; 2018 Feb; 102(2):341-348. PubMed ID: 30673527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management.
    He Z; Guo JF; Reitz SR; Lei ZR; Wu SY
    Insect Sci; 2020 Aug; 27(4):626-645. PubMed ID: 31453663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.