BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24405092)

  • 1. Fabrication of bifunctional gold/gelatin hybrid nanocomposites and their application.
    Cui Q; Yashchenok A; Zhang L; Li L; Masic A; Wienskol G; Möhwald H; Bargheer M
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1999-2002. PubMed ID: 24405092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering.
    Zhang K; Yao S; Li G; Hu Y
    Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Br(-)-induced facile fabrication of spongelike gold/amino acid nanocomposites and their applications in surface-enhanced Raman scattering.
    Liu Y; Liu L; Guo R
    Langmuir; 2010 Aug; 26(16):13479-85. PubMed ID: 20695594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite.
    Chen M; Zhang L; Gao M; Zhang X
    Talanta; 2017 Sep; 172():176-181. PubMed ID: 28602292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.
    Yang Y; Liu J; Fu ZW; Qin D
    J Am Chem Soc; 2014 Jun; 136(23):8153-6. PubMed ID: 24863686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions.
    Li P; Ma B; Yang L; Liu J
    Chem Commun (Camb); 2015 Jul; 51(57):11394-7. PubMed ID: 26087227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H; Rodriguez K; Renneckar S; Leng W; Vikesland PJ
    Analyst; 2015 Aug; 140(16):5640-9. PubMed ID: 26133311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection.
    Gao Y; Li Y; Wang Y; Chen Y; Gu J; Zhao W; Ding J; Shi J
    Small; 2015 Jan; 11(1):77-83. PubMed ID: 25223387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable synthesis of flower-like AuNFs@ZIF-67 core-shell nanocomposites for ultrasensitive SERS detection of histamine in fish.
    Xu S; Chen P; Lin X; Khan IM; Ma X; Wang Z
    Anal Chim Acta; 2023 Feb; 1240():340776. PubMed ID: 36641156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule detection in thiol-yne nanocomposites via surface-enhanced Raman spectroscopy.
    Boyd DA; Bezares FJ; Pacardo DB; Ukaegbu M; Hosten C; Ligler FS
    Anal Chem; 2014 Dec; 86(24):12315-20. PubMed ID: 25383912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.
    Ren X; Tan E; Lang X; You T; Jiang L; Zhang H; Yin P; Guo L
    Phys Chem Chem Phys; 2013 Sep; 15(34):14196-201. PubMed ID: 23873410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy.
    Wang X; Wang C; Cheng L; Lee ST; Liu Z
    J Am Chem Soc; 2012 May; 134(17):7414-22. PubMed ID: 22486413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ identification of crystal facet-mediated chemical reactions on tetrahexahedral gold nanocrystals using surface-enhanced Raman spectroscopy.
    Lang X; You T; Yin P; Tan E; Zhang Y; Huang Y; Zhu H; Ren B; Guo L
    Phys Chem Chem Phys; 2013 Nov; 15(44):19337-42. PubMed ID: 24121935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of graphene oxide/gold nanocomposites as ultrasensitive surface-enhanced Raman scattering substrates for clenbuterol detection.
    Sun Y; Chen H; Ma P; Li J; Zhang Z; Shi H; Zhang X
    Anal Bioanal Chem; 2020 Jan; 412(1):193-201. PubMed ID: 31760449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-controllable synthesis of surface-enhanced Raman scattering-active gold nanoparticles coated on TiO2.
    Kuo TC; Hsu TC; Liu YC; Yang KH
    Analyst; 2012 Aug; 137(16):3847-53. PubMed ID: 22763981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly stable gelatin layer-protected gold nanoparticles as surface-enhanced Raman scattering substrates.
    Lee C; Zhang P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4325-30. PubMed ID: 24738391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.