These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24405094)

  • 1. Efficient phosphodiester cleaving nanozymes resulting from multivalency and local medium polarity control.
    Diez-Castellnou M; Mancin F; Scrimin P
    J Am Chem Soc; 2014 Jan; 136(4):1158-61. PubMed ID: 24405094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Nanozymes-Gold Nanoparticle-Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination.
    Chen JL; Pezzato C; Scrimin P; Prins LJ
    Chemistry; 2016 May; 22(21):7028-32. PubMed ID: 26919202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric effects on the catalytic activities of zinc(II) complexes containing [12]aneN3 ligating units in the cleavage of the RNA and DNA model phosphates.
    Song Y; Zan J; Yan H; Lu ZL; Wang R
    Org Biomol Chem; 2012 Oct; 10(38):7714-20. PubMed ID: 22699360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications.
    Shan J; Tenhu H
    Chem Commun (Camb); 2007 Nov; (44):4580-98. PubMed ID: 17989803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles enhancing dismutation of superoxide radical by its bis(dithiocarbamato)copper(II) shell.
    Cao R; Villalonga R; Díaz-García AM; Cao R; Rojo T; Rodríguez-Argüelles MC
    Inorg Chem; 2011 Jun; 50(11):4705-12. PubMed ID: 21520892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 5-(difluorenyl)-1,10-phenanthroline-based Ru(II) complex as a coating agent for potential multifunctional gold nanoparticles.
    Moreau J; Lux F; Four M; Olesiak-Banska J; Matczyszyn K; Perriat P; Frochot C; Arnoux P; Tillement O; Samoc M; Ponterini G; Roux S; Lemercier G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14826-33. PubMed ID: 24921680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate.
    Czescik J; Zamolo S; Darbre T; Mancin F; Scrimin P
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31374998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the alkali-metal cation size in the self-assembly of polyoxometalate-monolayer shells on gold nanoparticles.
    Wang Y; Zeiri O; Sharet S; Weinstock IA
    Inorg Chem; 2012 Jul; 51(14):7436-8. PubMed ID: 22515560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts.
    Manea F; Houillon FB; Pasquato L; Scrimin P
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6165-9. PubMed ID: 15549744
    [No Abstract]   [Full Text] [Related]  

  • 10. There is no universal mechanism for the cleavage of RNA model compounds in the presence of metal ion catalysts.
    Korhonen H; Koivusalo T; Toivola S; Mikkola S
    Org Biomol Chem; 2013 Dec; 11(48):8324-39. PubMed ID: 24135854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic strategies for the surface functionalisation of gold nanoparticles with metals and metal clusters.
    Friederici M; Angurell I; Seco M; Rossell O; Llorca J
    Dalton Trans; 2011 Aug; 40(31):7934-40. PubMed ID: 21725529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles.
    Karg M; Jaber S; Hellweg T; Mulvaney P
    Langmuir; 2011 Jan; 27(2):820-7. PubMed ID: 21155547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of copper phthalocyanine rods on Au plasmon electrodes through micelle disruption methods.
    Chen WH; Ko WY; Chen YS; Cheng CY; Chan CM; Lin KJ
    Langmuir; 2010 Feb; 26(4):2191-5. PubMed ID: 20063868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles.
    Mancin F; Prins LJ; Pengo P; Pasquato L; Tecilla P; Scrimin P
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27527134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance.
    Zhu QL; Li J; Xu Q
    J Am Chem Soc; 2013 Jul; 135(28):10210-3. PubMed ID: 23805877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles.
    Zhang F; Zhou Y; Chen Y; Shi Z; Tang Y; Lu T
    J Colloid Interface Sci; 2010 Nov; 351(2):421-6. PubMed ID: 20797722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF).
    Dey C; Banerjee R
    Chem Commun (Camb); 2013 Jul; 49(59):6617-9. PubMed ID: 23770930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity for catalysis of phosphodiester cleavage by a dinuclear Zn(II) complex.
    Yang MY; Richard JP; Morrow JR
    Chem Commun (Camb); 2003 Nov; (22):2832-3. PubMed ID: 14651127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum.
    Lu F; Zhang Y; Zhang L; Zhang Y; Wang JX; Adzic RR; Stach EA; Gang O
    J Am Chem Soc; 2011 Nov; 133(45):18074-7. PubMed ID: 21999634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.