BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24405376)

  • 1. Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion.
    Xue J; Li H; Liu F; Xue J; Chen X; Zhan J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014 Apr; 31(4):666-75. PubMed ID: 24405376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipation and residues of difenoconazole and azoxystrobin in bananas and soil in two agro-climatic zones of China.
    Huan Z; Xu Z; Lv D; Xie D; Luo J
    Bull Environ Contam Toxicol; 2013 Dec; 91(6):734-8. PubMed ID: 24145925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing transfer of pesticide residues from chrysanthemum flowers into tea solution and associated health risks.
    Jiang M; Zhang W; Zhang T; Liang G; Hu B; Han P; Gong W
    Ecotoxicol Environ Saf; 2020 Jan; 187():109859. PubMed ID: 31677573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits.
    Utture SC; Banerjee K; Dasgupta S; Patil SH; Jadhav MR; Wagh SS; Kolekar SS; Anuse MA; Adsule PG
    J Agric Food Chem; 2011 Jul; 59(14):7866-73. PubMed ID: 21671616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and field efficacy of fungicides against sheath blight of rice and post-harvest fungicide residue in soil, husk, and brown rice using gas chromatography-tandem mass spectrometry.
    Kumar P; Ahlawat S; Chauhan R; Kumar A; Singh R; Kumar A
    Environ Monit Assess; 2018 Aug; 190(9):503. PubMed ID: 30088099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DETERMINATION OF AZOXYSTROBIN AND DIFENOCONAZOLE IN PESTICIDE PRODUCTS.
    Lazić S; Šunjka D
    Commun Agric Appl Biol Sci; 2015; 80(3):375-80. PubMed ID: 27141734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tebuconazole and Azoxystrobin Residue Behaviors and Distribution in Field and Cooked Peanut.
    Hou F; Teng P; Liu F; Wang W
    J Agric Food Chem; 2017 Jun; 65(22):4484-4492. PubMed ID: 28499340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation study of difenoconazole in/on chili fruit and soil in India.
    Mukhopadhyay S; Das S; Bhattacharyya A; Pal S
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):54-7. PubMed ID: 21533979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentrations and dissipation of difenoconazole and fluxapyroxad residues in apples and soil, determined by ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry.
    He M; Jia C; Zhao E; Chen L; Yu P; Jing J; Zheng Y
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5618-26. PubMed ID: 26578373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites.
    Jørgensen LF; Kjær J; Olsen P; Rosenbom AE
    Chemosphere; 2012 Jul; 88(5):554-62. PubMed ID: 22497784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas.
    Han AR; Nam B; Kim BR; Lee KC; Song BS; Kim SH; Kim JB; Jin CH
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30658439
    [No Abstract]   [Full Text] [Related]  

  • 12. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields.
    Zhang Z; Jiang W; Jian Q; Song W; Zheng Z; Wang D; Liu X
    Food Chem; 2015 Feb; 168():396-403. PubMed ID: 25172726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality.
    Heleno FF; de Queiroz ME; Neves AA; Freitas RS; Faroni LR; De Oliveira AF
    J Environ Sci Health B; 2014; 49(2):94-101. PubMed ID: 24328541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound pesticide controlled release system based on the mixture of poly(butylene succinate) and PLA.
    Wang Y; Li C; Wang Y; Zhang Y; Li X
    J Microencapsul; 2018 Aug; 35(5):494-503. PubMed ID: 30395751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different extracting methods on quality of Chrysanthemum Morifolium Ramat. Infusion.
    Ye Q; Liang Y; Lu J
    Asia Pac J Clin Nutr; 2007; 16 Suppl 1():183-7. PubMed ID: 17392101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent Odorants of Characteristic Floral/Sweet Odor in Chinese Chrysanthemum Flower Tea Infusion.
    Kaneko S; Chen J; Wu J; Suzuki Y; Ma L; Kumazawa K
    J Agric Food Chem; 2017 Nov; 65(46):10058-10063. PubMed ID: 29086561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors Affecting Transfer of Pyrethroid Residues from Herbal Teas to Infusion and Influence of Physicochemical Properties of Pesticides.
    Xiao JJ; Li Y; Fang QK; Shi YH; Liao M; Wu XW; Hua RM; Cao HQ
    Int J Environ Res Public Health; 2017 Sep; 14(10):. PubMed ID: 28973970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective Behavior of Chiral Difenoconazole in Apple and Field Soil.
    Chang W; Nie J; Yan Z
    Bull Environ Contam Toxicol; 2019 Sep; 103(3):501-505. PubMed ID: 31214756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and safety evaluation of difenoconazole residues in apples and soils.
    Guo C; Li JZ; Guo BY; Wang HL
    Bull Environ Contam Toxicol; 2010 Oct; 85(4):427-31. PubMed ID: 20865244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil.
    Dong F; Li J; Chankvetadze B; Cheng Y; Xu J; Liu X; Li Y; Chen X; Bertucci C; Tedesco D; Zanasi R; Zheng Y
    Environ Sci Technol; 2013 Apr; 47(7):3386-94. PubMed ID: 23451708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.