These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24405402)

  • 1. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines.
    Rosales-Mendoza S; Orellana-Escobedo L; Romero-Maldonado A; Decker EL; Reski R
    Expert Rev Vaccines; 2014 Feb; 13(2):203-12. PubMed ID: 24405402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors.
    Decker EL; Wiedemann G; Reski R
    Methods Mol Biol; 2015; 1321():213-24. PubMed ID: 26082225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene function analysis by artificial microRNAs in Physcomitrella patens.
    Khraiwesh B; Fattash I; Arif MA; Frank W
    Methods Mol Biol; 2011; 744():57-79. PubMed ID: 21533686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.
    Bach SS; King BC; Zhan X; Simonsen HT; Hamberger B
    Methods Mol Biol; 2014; 1153():257-71. PubMed ID: 24777804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Delta-fuc-t Delta-xyl-t mutant.
    Weise A; Altmann F; Rodriguez-Franco M; Sjoberg ER; Bäumer W; Launhardt H; Kietzmann M; Gorr G
    Plant Biotechnol J; 2007 May; 5(3):389-401. PubMed ID: 17359496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moss-based production of asialo-erythropoietin devoid of Lewis A and other plant-typical carbohydrate determinants.
    Parsons J; Altmann F; Arrenberg CK; Koprivova A; Beike AK; Stemmer C; Gorr G; Reski R; Decker EL
    Plant Biotechnol J; 2012 Sep; 10(7):851-61. PubMed ID: 22621344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The moss Physcomitrella patens: a novel model system for plant development and genomic studies.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.emo115. PubMed ID: 20147063
    [No Abstract]   [Full Text] [Related]  

  • 9. Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens.
    Anterola A; Shanle E; Perroud PF; Quatrano R
    Transgenic Res; 2009 Aug; 18(4):655-60. PubMed ID: 19241134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The moss Physcomitrella patens.
    Cove D
    Annu Rev Genet; 2005; 39():339-58. PubMed ID: 16285864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries.
    Gitzinger M; Parsons J; Reski R; Fussenegger M
    Plant Biotechnol J; 2009 Jan; 7(1):73-86. PubMed ID: 19021876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant glycans: friend or foe in vaccine development?
    Bosch D; Schots A
    Expert Rev Vaccines; 2010 Aug; 9(8):835-42. PubMed ID: 20673008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of artificial microRNAs in Physcomitrella patens.
    Fattash I; Khraiwesh B; Arif MA; Frank W
    Methods Mol Biol; 2012; 847():293-315. PubMed ID: 22351018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring plant biodiversity: the Physcomitrella genome and beyond.
    Lang D; Zimmer AD; Rensing SA; Reski R
    Trends Plant Sci; 2008 Oct; 13(10):542-9. PubMed ID: 18762443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The moss Physcomitrella patens: methods and tools from cultivation to targeted analysis of gene function.
    Strotbek C; Krinninger S; Frank W
    Int J Dev Biol; 2013; 57(6-8):553-64. PubMed ID: 24166438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: where are we?
    Avesani L; Bortesi L; Santi L; Falorni A; Pezzotti M
    Expert Rev Vaccines; 2010 Aug; 9(8):957-69. PubMed ID: 20673017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses.
    Lang D; Eisinger J; Reski R; Rensing SA
    Plant Biol (Stuttg); 2005 May; 7(3):238-50. PubMed ID: 15912443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knocking out the wall: protocols for gene targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V
    Methods Mol Biol; 2011; 715():273-90. PubMed ID: 21222091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physcomitrella patens, a versatile synthetic biology chassis.
    Reski R; Bae H; Simonsen HT
    Plant Cell Rep; 2018 Oct; 37(10):1409-1417. PubMed ID: 29797047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.