BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2440543)

  • 1. Membranes, calcium, and coupling.
    Eisenberg RS
    Can J Physiol Pharmacol; 1987 Apr; 65(4):686-90. PubMed ID: 2440543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of membrane processes in controlling skeletal muscle function.
    Kovács L
    Acta Physiol Acad Sci Hung; 1981; 57(1):1-8. PubMed ID: 6269349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.
    Rios E; Brum G
    Nature; 1987 Feb 19-25; 325(6106):717-20. PubMed ID: 2434854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation-contraction coupling in skeletal muscle.
    Caillé J; Ildefonse M; Rougier O
    Prog Biophys Mol Biol; 1985; 46(3):185-239. PubMed ID: 2418459
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle.
    Volpe P; Di Virgilio F; Pozzan T; Salviati G
    FEBS Lett; 1986 Mar; 197(1-2):1-4. PubMed ID: 2419159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the different calcium sources in the excitation-contraction coupling in crab muscle fibers.
    Mounier Y; Goblet C
    Can J Physiol Pharmacol; 1987 Apr; 65(4):667-71. PubMed ID: 2440540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium, cell membrane, and excitation-contraction coupling.
    Lüllmann H; Ziegler A
    J Cardiovasc Pharmacol; 1987; 10 Suppl 1():S2-8. PubMed ID: 2442514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-contraction coupling in single muscle fibers and the calcium channel in sarcoplasmic reticulum.
    Desmedt JE; Hainaut K
    Ann N Y Acad Sci; 1978 Apr; 307():433-5. PubMed ID: 360944
    [No Abstract]   [Full Text] [Related]  

  • 9. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.
    Beam KG; Knudson CM; Powell JA
    Nature; 1986 Mar 13-19; 320(6058):168-70. PubMed ID: 2419767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenesis and localization of Ca2+ channels in mammalian skeletal muscle in culture and role in excitation-contraction coupling.
    Romey G; Garcia L; Dimitriadou V; Pincon-Raymond M; Rieger F; Lazdunski M
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2933-7. PubMed ID: 2539603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of extracellular and "trigger" calcium ions in excitation--contraction coupling in skeletal muscle.
    Frank GB
    Can J Physiol Pharmacol; 1982 Apr; 60(4):427-39. PubMed ID: 6286065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle.
    Mathias RT; Levis RA; Eisenberg RS
    J Gen Physiol; 1980 Jul; 76(1):1-31. PubMed ID: 7411109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-permeable channel in sarcoplasmic reticulum of rabbit skeletal muscle.
    Sekiguchi T; Kawahara S; Shimizu H
    J Biochem; 1987 Aug; 102(2):307-12. PubMed ID: 2444581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.
    Jong DS; Stroffekova K; Heiny JA
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers.
    Donaldson SK; Goldberg ND; Walseth TF; Huetteman DA
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5749-53. PubMed ID: 3261014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle.
    Vergara J; Tsien RY; Delay M
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6352-6. PubMed ID: 2994073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Brum G; Ríos E; Stéfani E
    J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of stimulated 45Ca efflux in skinned skeletal muscle fibers.
    Stephenson EW
    Can J Physiol Pharmacol; 1987 Apr; 65(4):632-41. PubMed ID: 2440538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation-contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers.
    Barrett N; Barrett EF
    Science; 1978 Jun; 200(4347):1270-2. PubMed ID: 96524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.