These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2440544)

  • 1. Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction.
    Howell JN; Oetliker H
    Can J Physiol Pharmacol; 1987 Apr; 65(4):691-6. PubMed ID: 2440544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ruthenium red on excitation-contraction coupling in frog skeletal muscle.
    Suzuki T; Obara K; Nagai T
    Jpn J Physiol; 1980; 30(1):49-59. PubMed ID: 6155498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium red: differential effects on excitation and excitation-contraction coupling in frog skeletal muscle.
    Snowdowne KW; Howell JN
    J Muscle Res Cell Motil; 1984 Aug; 5(4):399-410. PubMed ID: 6207202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for t-tubular conduction failure in frog skeletal muscle induced by elevated extracellular calcium concentration.
    Howell JN; Shankar A; Howell SG; Wei F
    J Muscle Res Cell Motil; 1987 Jun; 8(3):229-41. PubMed ID: 3497173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of ruthenium red with surface charges controlling excitation-contraction coupling in frog sartorius.
    Dörrscheidt-Käfer M
    Pflugers Arch; 1979 Jun; 380(2):181-7. PubMed ID: 314624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O; Kotsias BA
    Life Sci; 1989; 45(18):1699-708. PubMed ID: 2479803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers.
    Barrett N; Barrett EF
    Science; 1978 Jun; 200(4347):1270-2. PubMed ID: 96524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ruthenium red and its interaction with membrane-bound sialic acid on contraction threshold in frog skeletal muscle [proceedings].
    Dörrscheidt-Káfer M; Grocki K
    J Physiol; 1978 Nov; 284():52P. PubMed ID: 310462
    [No Abstract]   [Full Text] [Related]  

  • 10. Protective action of ruthenium red toward capsaicin desensitization of sensory fibers.
    Maggi CA; Patacchini R; Santicioli P; Giuliani S; Geppetti P; Meli A
    Neurosci Lett; 1988 May; 88(2):201-5. PubMed ID: 2454437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium red reduces acetylcholine sensitivity and increases desensitization at the frog neuromuscular junction.
    Ribera AB; Nastuk WL
    Neuroscience; 1987 Nov; 23(2):739-44. PubMed ID: 2449634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiation and inhibition of ganglionic transmission by ruthenium red.
    McIsaac RJ
    Arch Int Pharmacodyn Ther; 1979 Dec; 242(2):248-61. PubMed ID: 94531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog.
    Bezanilla F; Caputo C; Gonzalez-Serratos H; Venosa RA
    J Physiol; 1972 Jun; 223(2):507-23. PubMed ID: 4537711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular ions and excitation-contraction coupling in frog twitch muscle fibres.
    Miledi R; Parker I; Zhu PH
    J Physiol; 1984 Jun; 351():687-710. PubMed ID: 6747880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH on excitation and contraction in frog twitch muscle.
    Foulks JG; Perry FA
    Can J Physiol Pharmacol; 1977 Jun; 55(3):709-23. PubMed ID: 18272
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle.
    Allen DG; Blinks JR; Godt RE
    J Physiol; 1984 Sep; 354():225-51. PubMed ID: 6090648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease in the size of tetanic responses produced by nitrendipine or by extracellular calcium ion removal without blocking twitches or action potentials in skeletal muscle.
    Oz M; Frank GB
    J Pharmacol Exp Ther; 1991 May; 257(2):575-81. PubMed ID: 1903444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.