These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24405462)

  • 1. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
    Nguyen TM; Lee S; Lee SB
    Nanomedicine (Lond); 2014 Oct; 9(15):2263-72. PubMed ID: 24405462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdermal therapeutic system of isradipine: effect of hydrophilic and hydrophobic matrix on in vitro and ex vivo characteristics.
    Tirunagari M; Jangala VR; Khagga M; Gannu R
    Arch Pharm Res; 2010 Jul; 33(7):1025-33. PubMed ID: 20661712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane.
    Suedee R; Bodhibukkana C; Tangthong N; Amnuaikit C; Kaewnopparat S; Srichana T
    J Control Release; 2008 Aug; 129(3):170-8. PubMed ID: 18550193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch.
    Kataria K; Gupta A; Rath G; Mathur RB; Dhakate SR
    Int J Pharm; 2014 Jul; 469(1):102-10. PubMed ID: 24751731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study.
    Kshirsagar SJ; Bhalekar MR; Mohapatra SK
    Drug Dev Ind Pharm; 2012 Dec; 38(12):1530-7. PubMed ID: 22356303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-layer weekly sustained release transdermal patch containing gestodene and ethinylestradiol.
    Gao Y; Liang J; Liu J; Xiao Y
    Int J Pharm; 2009 Jul; 377(1-2):128-34. PubMed ID: 19463930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin B12 loaded polycaprolactone nanofibers: a novel transdermal route for the water soluble energy supplement delivery.
    Madhaiyan K; Sridhar R; Sundarrajan S; Venugopal JR; Ramakrishna S
    Int J Pharm; 2013 Feb; 444(1-2):70-6. PubMed ID: 23370432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system.
    Im JS; Bai BCh; Lee YS
    Biomaterials; 2010 Feb; 31(6):1414-9. PubMed ID: 19931904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and in vivo evaluation of an indapamide transdermal patch.
    Ren C; Fang L; Ling L; Wang Q; Liu S; Zhao L; He Z
    Int J Pharm; 2009 Mar; 370(1-2):129-35. PubMed ID: 19114099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration.
    Shi Y; Li Y; Wu J; Wang W; Dong A; Zhang J
    J Biomater Sci Polym Ed; 2014; 25(7):713-28. PubMed ID: 24641249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of carbon nanotube-polyimide composite hollow microneedles for transdermal drug delivery.
    Lyon BJ; Aria AI; Gharib M
    Biomed Microdevices; 2014 Dec; 16(6):879-86. PubMed ID: 25095899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microprocessor-controlled iontophoretic drug delivery of 5-fluorouracil: pharmacodynamic and pharmacokinetic study.
    Chandrashekar NS; Shobha Rani RH
    J BUON; 2007; 12(4):529-34. PubMed ID: 18067212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iontophoretically controlled insulin delivery via water-soluble conductive polymer PANI:PSS and thermoplastic polyurethane matrix.
    Morarad R; Naeowong W; Sirivat A
    Drug Deliv Transl Res; 2024 Jan; 14(1):280-293. PubMed ID: 37566363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of a drug release profile in the transdermal drug delivery system.
    Zeng J; Tikare V; Jacob KI
    Langmuir; 2006 Jan; 22(3):1333-40. PubMed ID: 16430302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.
    Lam PL; Gambari R
    J Control Release; 2014 Mar; 178():25-45. PubMed ID: 24417967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in polymeric transdermal drug delivery systems.
    Sabbagh F; Kim BS
    J Control Release; 2022 Jan; 341():132-146. PubMed ID: 34813879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation development, in vitro and in vivo evaluation of membrane controlled transdermal systems of glibenclamide.
    Mutalik S; Udupa N
    J Pharm Pharm Sci; 2005 Jan; 8(1):26-38. PubMed ID: 15946595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].
    Kuznetsova EG; Kuryleva OM; Salomatina LA; Sevast'ianov VI
    Med Tekh; 2008; (3):33-5. PubMed ID: 18688942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.