These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24406196)
1. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy. Canetta E; Riches A; Borger E; Herrington S; Dholakia K; Adya AK Acta Biomater; 2014 May; 10(5):2043-55. PubMed ID: 24406196 [TBL] [Abstract][Full Text] [Related]
2. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. Canetta E; Mazilu M; De Luca AC; Carruthers AE; Dholakia K; Neilson S; Sargeant H; Briscoe T; Herrington CS; Riches AC J Biomed Opt; 2011 Mar; 16(3):037002. PubMed ID: 21456875 [TBL] [Abstract][Full Text] [Related]
3. BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study. Wu Y; McEwen GD; Harihar S; Baker SM; DeWald DB; Zhou A Cancer Lett; 2010 Jul; 293(1):82-91. PubMed ID: 20083343 [TBL] [Abstract][Full Text] [Related]
4. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy. McEwen GD; Wu Y; Tang M; Qi X; Xiao Z; Baker SM; Yu T; Gilbertson TA; DeWald DB; Zhou A Analyst; 2013 Feb; 138(3):787-97. PubMed ID: 23187307 [TBL] [Abstract][Full Text] [Related]
5. Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis. Zhu X; Qin R; Qu K; Wang Z; Zhao X; Xu W Acta Biomater; 2023 Mar; 158():358-373. PubMed ID: 36581006 [TBL] [Abstract][Full Text] [Related]
6. Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. Harvey TJ; Faria EC; Henderson A; Gazi E; Ward AD; Clarke NW; Brown MD; Snook RD; Gardner P J Biomed Opt; 2008; 13(6):064004. PubMed ID: 19123651 [TBL] [Abstract][Full Text] [Related]
7. Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus. Farhane Z; Bonnier F; Casey A; Maguire A; O'Neill L; Byrne HJ Analyst; 2015 Sep; 140(17):5908-19. PubMed ID: 26207998 [TBL] [Abstract][Full Text] [Related]
8. AFM-Based Poroelastic@Membrane Analysis of Cells and its Opportunities for Translational Medicine. Ren K; Feng J; Bi H; Sun Q; Li X; Han D Small; 2023 Nov; 19(44):e2303610. PubMed ID: 37403276 [TBL] [Abstract][Full Text] [Related]
9. The biochemical, nanomechanical and chemometric signatures of brain cancer. Abramczyk H; Imiela A Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():8-19. PubMed ID: 28688336 [TBL] [Abstract][Full Text] [Related]
10. Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research. Abramczyk H; Imiela A; Brozek-Pluska B; Kopec M Nanomedicine (Lond); 2019 Jul; 14(14):1873-1888. PubMed ID: 31305216 [No Abstract] [Full Text] [Related]
11. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion. Omidvar R; Tafazzoli-Shadpour M; Shokrgozar MA; Rostami M J Biomech; 2014 Oct; 47(13):3373-9. PubMed ID: 25169659 [TBL] [Abstract][Full Text] [Related]
12. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy. Siamantouras E; Hills CE; Squires PE; Liu KK Nanomedicine; 2016 May; 12(4):1013-1021. PubMed ID: 26733260 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of CA19-9 as a tumor marker in urothelial malignancy. Chuang CK; Liao SK Scand J Urol Nephrol; 2004; 38(5):359-65. PubMed ID: 15764245 [TBL] [Abstract][Full Text] [Related]
15. Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening. Praveen BB; Mazilu M; Marchington RF; Herrington CS; Riches A; Dholakia K PLoS One; 2013; 8(6):e67211. PubMed ID: 23825643 [TBL] [Abstract][Full Text] [Related]
16. Using the atomic force microscope to observe and study the ultrastructure of the living BIU-87 cells of the human bladder cancer. Chen B; Wang Q; Han L Scanning; 2004; 26(4):162-6. PubMed ID: 15473267 [TBL] [Abstract][Full Text] [Related]
17. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Li M; Xi N; Wang YC; Liu LQ Acta Pharmacol Sin; 2021 Mar; 42(3):323-339. PubMed ID: 32807839 [TBL] [Abstract][Full Text] [Related]
18. Classification of fixed urological cells using Raman tweezers. Harvey TJ; Hughes C; Ward AD; Faria EC; Henderson A; Clarke NW; Brown MD; Snook RD; Gardner P J Biophotonics; 2009 Feb; 2(1-2):47-69. PubMed ID: 19343685 [TBL] [Abstract][Full Text] [Related]
19. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tsang M; Chun YW; Im YM; Khang D; Webster TJ Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694 [TBL] [Abstract][Full Text] [Related]
20. Raman spectroscopy of bladder tissue in the presence of 5-aminolevulinic acid. Grimbergen MC; van Swol CF; van Moorselaar RJ; Uff J; Mahadevan-Jansen A; Stone N J Photochem Photobiol B; 2009 Jun; 95(3):170-6. PubMed ID: 19362851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]