BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 24406535)

  • 1. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.
    Menendez JA; Alarcón T; Corominas-Faja B; Cuyàs E; López-Bonet E; Martin AG; Vellon L
    Cell Cycle; 2014; 13(3):358-70. PubMed ID: 24406535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic reprogramming of the germ cell nuclear factor gene is required for proper differentiation of induced pluripotent cells.
    Wang H; Wang X; Xu X; Zwaka TP; Cooney AJ
    Stem Cells; 2013 Dec; 31(12):2659-66. PubMed ID: 23495137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer epigenetics: from disruption of differentiation programs to the emergence of cancer stem cells.
    Scaffidi P; Misteli T
    Cold Spring Harb Symp Quant Biol; 2010; 75():251-8. PubMed ID: 21047903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced pluripotent stem cells: what lies beyond the paradigm shift.
    Cox JL; Rizzino A
    Exp Biol Med (Maywood); 2010 Feb; 235(2):148-58. PubMed ID: 20404029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic reprogramming and induced pluripotency.
    Hochedlinger K; Plath K
    Development; 2009 Feb; 136(4):509-23. PubMed ID: 19168672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a High-Efficacy Reprogramming Method for Generating Human Induced Pluripotent Stem (iPS) Cells from Pathologic and Senescent Somatic Cells.
    Tanaka N; Kato H; Tsuda H; Sato Y; Muramatsu T; Iguchi A; Nakajima H; Yoshitake A; Senbonmatsu T
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor.
    Matsuda Y; Semi K; Yamada Y
    Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics.
    Stricker S; Pollard S
    Epigenetics; 2014 Jun; 9(6):798-802. PubMed ID: 24686321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status in cancer cell reprogramming and its clinical implications.
    Izgi K; Canatan H; Iskender B
    J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced pluripotent stem cell technology for dissecting the cancer epigenome.
    Semi K; Yamada Y
    Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic reprogramming in cancer.
    Suvà ML; Riggi N; Bernstein BE
    Science; 2013 Mar; 339(6127):1567-70. PubMed ID: 23539597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states.
    Hotta A; Ellis J
    J Cell Biochem; 2008 Nov; 105(4):940-8. PubMed ID: 18773452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease.
    Chen LW; Kuang F; Wei LC; Ding YX; Yung KK; Chan YS
    CNS Neurol Disord Drug Targets; 2011 Jun; 10(4):449-58. PubMed ID: 21495962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming.
    Lee MR; Prasain N; Chae HD; Kim YJ; Mantel C; Yoder MC; Broxmeyer HE
    Stem Cells; 2013 Apr; 31(4):666-81. PubMed ID: 23255147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype.
    Hiew MSY; Cheng HP; Huang CJ; Chong KY; Cheong SK; Choo KB; Kamarul T
    J Biomed Sci; 2018 Jul; 25(1):57. PubMed ID: 30025541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Reprogram Enablement" as an Assay for Identifying Early Oncogenic Pathways by Their Ability to Allow Neoplastic Cells to Reacquire an Epiblast State.
    Kong Y; Gimple RC; McVicar RN; Hodges AP; Yin J; Liu Y; Zhan W; Snyder EY
    Stem Cell Reports; 2020 Sep; 15(3):761-775. PubMed ID: 32795421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [iPS Cell Technology for Dissecting Mechanisms of Cancer Development].
    Nakasuka F; Yamada Y
    Gan To Kagaku Ryoho; 2020 Oct; 47(10):1407-1410. PubMed ID: 33130730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular reprogramming and cancer development.
    Semi K; Matsuda Y; Ohnishi K; Yamada Y
    Int J Cancer; 2013 Mar; 132(6):1240-8. PubMed ID: 23180619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct reprogramming of human neural stem cells by OCT4.
    Kim JB; Greber B; Araúzo-Bravo MJ; Meyer J; Park KI; Zaehres H; Schöler HR
    Nature; 2009 Oct; 461(7264):649-3. PubMed ID: 19718018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming.
    Thekkeparambil Chandrabose S; Sriram S; Subramanian S; Cheng S; Ong WK; Rozen S; Kasim NHA; Sugii S
    Stem Cell Res Ther; 2018 Mar; 9(1):68. PubMed ID: 29559008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.