These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 24406720)
21. Opening new vistas on obsessive-compulsive disorder with the observing response task. Pickenhan L; Milton AL Cogn Affect Behav Neurosci; 2024 Apr; 24(2):249-265. PubMed ID: 38316708 [TBL] [Abstract][Full Text] [Related]
22. Psychostimulant-induced behavior as an animal model of obsessive-compulsive disorder: an ethological approach to the form of compulsive rituals. Eilam D; Szechtman H CNS Spectr; 2005 Mar; 10(3):191-202. PubMed ID: 15744221 [TBL] [Abstract][Full Text] [Related]
23. The influence of cost manipulation on water contrafreeloading induced by repeated exposure to quinpirole in the rat. Milella MS; Amato D; Badiani A; Nencini P Psychopharmacology (Berl); 2008 Apr; 197(3):379-90. PubMed ID: 18189126 [TBL] [Abstract][Full Text] [Related]
24. Compulsive-like effects of quinpirole on drinking behavior in rats are inhibited by substituting ethanol for water. Amato D; Milella MS; Badiani A; Nencini P Behav Brain Res; 2007 Feb; 177(2):340-6. PubMed ID: 17157931 [TBL] [Abstract][Full Text] [Related]
25. Role of dopamine systems in obsessive-compulsive disorder (OCD): implications from a novel psychostimulant-induced animal model. Szechtman H; Culver K; Eilam D Pol J Pharmacol; 1999; 51(1):55-61. PubMed ID: 10389145 [TBL] [Abstract][Full Text] [Related]
26. Dopaminergic and serotonergic modulation of persistent behaviour in the reinforced spatial alternation model of obsessive-compulsive disorder. Kontis D; Boulougouris V; Papakosta VM; Kalogerakou S; Papadopoulos S; Poulopoulou C; Papadimitriou GN; Tsaltas E Psychopharmacology (Berl); 2008 Nov; 200(4):597-610. PubMed ID: 18622751 [TBL] [Abstract][Full Text] [Related]
27. Opposite roles of dopamine and orexin in quinpirole-induced excessive drinking: a rat model of psychotic polydipsia. Milella MS; Passarelli F; De Carolis L; Schepisi C; Nativio P; Scaccianoce S; Nencini P Psychopharmacology (Berl); 2010 Aug; 211(3):355-66. PubMed ID: 20552172 [TBL] [Abstract][Full Text] [Related]
28. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats. Baladi MG; Newman AH; France CP Psychopharmacology (Berl); 2014 Feb; 231(3):581-91. PubMed ID: 24030470 [TBL] [Abstract][Full Text] [Related]
29. Compulsive-like effects of repeated administration of quinpirole on drinking behavior in rats. Amato D; Milella MS; Badiani A; Nencini P Behav Brain Res; 2006 Sep; 172(1):1-13. PubMed ID: 16677719 [TBL] [Abstract][Full Text] [Related]
30. The role of dopamine in reinforcement: changes in reinforcement sensitivity induced by D1-type, D2-type, and nonselective dopamine receptor agonists. Bratcher NA; Farmer-Dougan V; Dougan JD; Heidenreich BA; Garris PA J Exp Anal Behav; 2005 Nov; 84(3):371-99. PubMed ID: 16596971 [TBL] [Abstract][Full Text] [Related]
31. Respective roles of dopamine D2 and D3 receptors in food-seeking behaviour in rats. Duarte C; Biala G; Le Bihan C; Hamon M; Thiébot MH Psychopharmacology (Berl); 2003 Feb; 166(1):19-32. PubMed ID: 12525958 [TBL] [Abstract][Full Text] [Related]
32. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Kanen JW; Ersche KD; Fineberg NA; Robbins TW; Cardinal RN Psychopharmacology (Berl); 2019 Aug; 236(8):2337-2358. PubMed ID: 31324936 [TBL] [Abstract][Full Text] [Related]
33. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value. Winter S; Dieckmann M; Schwabe K Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903 [TBL] [Abstract][Full Text] [Related]
35. Contrafreeloading in Rats Is Adaptive and Flexible: Support for an Animal Model of Compulsive Checking. Frederick MJ; Cocuzzo SE Evol Psychol; 2017; 15(4):1474704917735937. PubMed ID: 29073770 [TBL] [Abstract][Full Text] [Related]
36. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Szechtman H; Sulis W; Eilam D Behav Neurosci; 1998 Dec; 112(6):1475-85. PubMed ID: 9926830 [TBL] [Abstract][Full Text] [Related]
37. The role of nucleus accumbens and dorsolateral striatal D2 receptors in active avoidance conditioning. Boschen SL; Wietzikoski EC; Winn P; Da Cunha C Neurobiol Learn Mem; 2011 Sep; 96(2):254-62. PubMed ID: 21619938 [TBL] [Abstract][Full Text] [Related]
38. The modulatory role of accumbens and hippocampus D2 receptors in anxiety and memory. Ebrahimi-Ghiri M; Nasehi M; Zarrindast MR Naunyn Schmiedebergs Arch Pharmacol; 2018 Oct; 391(10):1107-1118. PubMed ID: 30003299 [TBL] [Abstract][Full Text] [Related]
39. No effect of riluzole and memantine on learning deficit following quinpirole sensitization - An animal model of obsessive-compulsive disorder. Janikova M; Brozka H; Radostova D; Svoboda J; Stuchlik A Physiol Behav; 2019 May; 204():241-247. PubMed ID: 30826389 [TBL] [Abstract][Full Text] [Related]
40. Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats. Cetin T; Freudenberg F; Füchtemeier M; Koch M Neurosci Lett; 2004 Nov; 370(2-3):114-7. PubMed ID: 15488305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]