These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24406750)

  • 1. Morphology and growth speed of hcp domains during shock-induced phase transition in iron.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Jan; 4():3628. PubMed ID: 24406750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading.
    Shao JL; Duan SQ; He AM; Wang P; Qin CS
    J Phys Condens Matter; 2010 Sep; 22(35):355403. PubMed ID: 21403289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructive structural phase transitions in dense Mg.
    Yao Y; Klug DD
    J Phys Condens Matter; 2012 Jul; 24(26):265401. PubMed ID: 22692144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2010 Nov; 22(43):435404. PubMed ID: 21403328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks.
    Yaakobi B; Boehly TR; Meyerhofer DD; Collins TJ; Remington BA; Allen PG; Pollaine SM; Lorenzana HE; Eggert JH
    Phys Rev Lett; 2005 Aug; 95(7):075501. PubMed ID: 16196790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock-induced plasticity and phase transformation in single crystal magnesium: an interatomic potential and non-equilibrium molecular dynamics simulations.
    Jian Z; Chen Y; Xiao S; Wang L; Li X; Wang K; Deng H; Hu W
    J Phys Condens Matter; 2022 Jan; 34(11):. PubMed ID: 34920445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of the solid-liquid interface migration in terbium.
    Mendelev MI; Zhang F; Song H; Sun Y; Wang CZ; Ho KM
    J Chem Phys; 2018 Jun; 148(21):214705. PubMed ID: 29884043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonadiabaticity in the iron bcc to hcp phase transformation.
    Johnson DF; Carter EA
    J Chem Phys; 2008 Mar; 128(10):104703. PubMed ID: 18345915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic properties of structural transition in iron under uniaxial compression.
    Shao JL; Duan SQ; He AM; Qin CS; Wang P
    J Phys Condens Matter; 2009 Jun; 21(24):245703. PubMed ID: 21693955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of phase competition in terbium.
    Song H; Mendelev MI
    J Chem Phys; 2018 Dec; 149(24):244501. PubMed ID: 30599751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth mechanisms of hcp domains in compressed iron.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Jun; 4():5273. PubMed ID: 24920496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock waves in polycrystalline iron.
    Kadau K; Germann TC; Lomdahl PS; Albers RC; Wark JS; Higginbotham A; Holian BL
    Phys Rev Lett; 2007 Mar; 98(13):135701. PubMed ID: 17501216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression.
    Wang BT; Shao JL; Zhang GC; Li WD; Zhang P
    J Phys Condens Matter; 2009 Dec; 21(49):495702. PubMed ID: 21836202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different structural transitions of rapidly supercooled tantalum melt under pressure.
    Mo Y; Tian Z; Lang L; Zhou L; Liang Y; Zhang H; Liu R; Peng P; Wen D
    Phys Chem Chem Phys; 2020 Aug; 22(32):18078-18090. PubMed ID: 32760969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unconventional hydrogen effect that suppresses thermal formation of the hcp phase in fcc steels.
    Koyama M; Hirata K; Abe Y; Mitsuda A; Iikubo S; Tsuzaki K
    Sci Rep; 2018 Oct; 8(1):16136. PubMed ID: 30382143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenation treatment under several gigapascals assists diffusionless transformation in a face-centered cubic steel.
    Koyama M; Saitoh H; Sato T; Orimo SI; Akiyama E
    Sci Rep; 2021 Sep; 11(1):19384. PubMed ID: 34588585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids.
    Warshavsky VB; Ford DM; Monson PA
    J Chem Phys; 2018 Jan; 148(2):024502. PubMed ID: 29331120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed-Mediated Growth of Au Nanospheres into Hexagonal Stars and the Emergence of a Hexagonal Close-Packed Phase.
    Huo D; Cao Z; Li J; Xie M; Tao J; Xia Y
    Nano Lett; 2019 May; 19(5):3115-3121. PubMed ID: 30924662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the body-centered cubic--hexagonal close-packed phase transition in iron.
    Bassett WA; Huang E
    Science; 1987 Nov; 238(4828):780-3. PubMed ID: 17814705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.