These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24407297)

  • 41. The effect of Hamming distances in a computational model of selection by consequences.
    Popa A; McDowell JJ
    Behav Processes; 2010 May; 84(1):428-34. PubMed ID: 20152891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Rearrangements on Multigenomic Models: Applications of Graph Convexity Problems.
    Cunha LFI; Protti F
    J Comput Biol; 2019 Nov; 26(11):1214-1222. PubMed ID: 31120333
    [No Abstract]   [Full Text] [Related]  

  • 43. Linear space string correction algorithm using the Damerau-Levenshtein distance.
    Zhao C; Sahni S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):4. PubMed ID: 33297940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Algorithms for multiple genome rearrangement by signed reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2003; ():363-74. PubMed ID: 12603042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving reversal median computation using commuting reversals and cycle information.
    Arndt W; Tang J
    J Comput Biol; 2008 Oct; 15(8):1079-92. PubMed ID: 18774904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A (1.5 + epsilon)-approximation algorithm for unsigned translocation distance.
    Cui Y; Wang L; Zhu D; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):56-66. PubMed ID: 18245875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A lower bound on the reversal and transposition diameter.
    Meidanis J; Walter MM; Dias Z
    J Comput Biol; 2002; 9(5):743-5. PubMed ID: 12487761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations.
    Ho T; Oh SR; Kim H
    PLoS One; 2017; 12(10):e0186251. PubMed ID: 29016700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exemplar longest common subsequence.
    Bonizzoni P; Della Vedova G; Dondi R; Fertin G; Rizzi R; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):535-43. PubMed ID: 17975265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome rearrangement based on reversals that preserve conserved intervals.
    Bernt M; Merkle D; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):275-88. PubMed ID: 17048465
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A study of fitness distance correlation as a difficulty measure in genetic programming.
    Tomassini M; Vanneschi L; Collard P; Clergue M
    Evol Comput; 2005; 13(2):213-39. PubMed ID: 15969901
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome Rearrangement Analysis: Cut and Join Genome Rearrangements and Gene Cluster Preserving Approaches.
    Hartmann T; Middendorf M; Bernt M
    Methods Mol Biol; 2018; 1704():261-289. PubMed ID: 29277869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Colored de Bruijn graphs and the genome halving problem.
    Alekseyev MA; Pevzner PA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):98-107. PubMed ID: 17277417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rearrangement-based phylogeny using the Single-Cut-or-Join operation.
    Biller P; Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):122-34. PubMed ID: 23702549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detecting duplicate biological entities using Shortest Path Edit Distance.
    Rudniy A; Song M; Geller J
    Int J Data Min Bioinform; 2010; 4(4):395-410. PubMed ID: 20815139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pseudo-boolean framework for computing rearrangement distances between genomes with duplicates.
    Angibaud S; Fertin G; Rusu I; Vialette S
    J Comput Biol; 2007 May; 14(4):379-93. PubMed ID: 17572018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient decoding algorithms for generalized hidden Markov model gene finders.
    Majoros WH; Pertea M; Delcher AL; Salzberg SL
    BMC Bioinformatics; 2005 Jan; 6():16. PubMed ID: 15667658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removing noise and ambiguities from comparative maps in rearrangement analysis.
    Zheng C; Zhu Q; Sankoff D
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):515-22. PubMed ID: 17975263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An algorithm for approximate tandem repeats.
    Landau GM; Schmidt JP; Sokol D
    J Comput Biol; 2001; 8(1):1-18. PubMed ID: 11339903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.