BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24407503)

  • 1. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head.
    Selb J; Ogden TM; Dubb J; Fang Q; Boas DA
    J Biomed Opt; 2014 Jan; 19(1):16010. PubMed ID: 24407503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation.
    Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.
    Hallacoglu B; Sassaroli A; Fantini S
    PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy.
    Umeyama S; Yamada T
    J Biomed Opt; 2009; 14(6):064025. PubMed ID: 20059263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations.
    Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M
    Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head model based on the shape of the subject's head for optical brain imaging.
    Mahmoodkalayeh S; Ansari MA; Tuchin VV
    Biomed Opt Express; 2019 Jun; 10(6):2795-2808. PubMed ID: 31259052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging.
    Mansouri C; L'huillier JP; Kashou NH; Humeau A
    Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
    Strangman GE; Zhang Q; Li Z
    Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.
    Sato C; Shimada M; Tanikawa Y; Hoshi Y
    J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models.
    Kao TC; Sung KB
    J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scatterBrains: an open database of human head models and companion optode locations for realistic Monte Carlo photon simulations.
    Wu MM; Horstmeyer R; Carp SA
    J Biomed Opt; 2023 Oct; 28(10):100501. PubMed ID: 37811478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study.
    Zhang Y; Sun JW; Rolfe P
    Physiol Meas; 2012 Jun; 33(6):925-42. PubMed ID: 22551687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models.
    Fukui Y; Ajichi Y; Okada E
    Appl Opt; 2003 Jun; 42(16):2881-7. PubMed ID: 12790436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for assessment of inflow and washout of optical contrast agent to the brain by analysis of time-resolved diffuse reflectance and fluorescence signals.
    Milej D; Kruczkowski M; Gerega A; Sawosz P; Maniewski R; Liebert A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1919-22. PubMed ID: 24110088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-oriented simulation based on Monte Carlo algorithm by using MRI data.
    Chuang CC; Lee YT; Chen CM; Hsieh YS; Liu TC; Sun CW
    Biomed Eng Online; 2012 Apr; 11():21. PubMed ID: 22510474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications.
    Wang L; Ayaz H; Izzetoglu M
    J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data.
    Chuang CC; Chen CM; Hsieh YS; Liu TC; Sun CW
    J Biophotonics; 2013 Mar; 6(3):267-74. PubMed ID: 22678984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast estimation of adult cerebral blood content and oxygenation with hyperspectral time-resolved near-infrared spectroscopy.
    Cohen DJF; Li NC; Ioussoufovitch S; Diop M
    Front Neurosci; 2023; 17():1020151. PubMed ID: 36875650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of light absorption changes in the human head using analytically computed photon partial pathlengths in layered media.
    Vera DA; García HA; Waks-Serra MV; Carbone NA; Iriarte DI; Pomarico JA
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):C126-C137. PubMed ID: 37132982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.