These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24407516)

  • 1. Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites.
    Wolf P; Hammond C; Conrad S; Hermans I
    Dalton Trans; 2014 Mar; 43(11):4514-9. PubMed ID: 24407516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.
    Assary RS; Curtiss LA
    J Phys Chem A; 2011 Aug; 115(31):8754-60. PubMed ID: 21707087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag-Promoted ZrBEA Zeolites Obtained by Post-Synthetic Modification for Conversion of Ethanol to Butadiene.
    Sushkevich VL; Ivanova II
    ChemSusChem; 2016 Aug; 9(16):2216-25. PubMed ID: 27467567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    ChemSusChem; 2013 May; 6(5):831-9. PubMed ID: 23554234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel surfactant-free route to delaminated all-silica and titanosilicate zeolites derived from a layered borosilicate MWW precursor.
    Ouyang X; Wanglee YJ; Hwang SJ; Xie D; Rea T; Zones SI; Katz A
    Dalton Trans; 2014 Jul; 43(27):10417-29. PubMed ID: 24676573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic Trends in Olefin Epoxidation over Group IV and V Framework-Substituted Zeolite Catalysts: A Kinetic and Spectroscopic Study.
    Bregante DT; Flaherty DW
    J Am Chem Soc; 2017 May; 139(20):6888-6898. PubMed ID: 28453262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave synthesis of metallosilicate zeolites with fibrous morphology.
    Hwang YK; Jin T; Kim JM; Kwon YU; Park SE; Chang JS
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1786-91. PubMed ID: 17025084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica.
    Zakharova MV; Kleitz F; Fontaine FG
    Dalton Trans; 2017 Mar; 46(12):3864-3876. PubMed ID: 28251214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes.
    Moliner M
    Dalton Trans; 2014 Mar; 43(11):4197-208. PubMed ID: 24142026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Sites of M(IV)-incorporated Zeolites (M = Sn, Ti, Ge, Zr).
    Yang G; Zhou L
    Sci Rep; 2017 Nov; 7(1):16113. PubMed ID: 29170532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Study of the Solid-State Incorporation of Sn(II) Acetate into Zeolite β.
    Beynon OT; Owens A; Tarantino G; Hammond C; Logsdail AJ
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19072-19087. PubMed ID: 37791098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.
    Luo HY; Lewis JD; Román-Leshkov Y
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():663-92. PubMed ID: 27146555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of Ti(IV) as a Lewis acid in the chemistry of titanium zeolites: Formation, structure, reactivity, and aging of Ti-peroxo oxidizing intermediates. A first principles study.
    Spanó E; Tabacchi G; Gamba A; Fois E
    J Phys Chem B; 2006 Nov; 110(43):21651-61. PubMed ID: 17064121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Active and Spectator Sn Sites in Sn-β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis.
    Hammond C; Padovan D; Al-Nayili A; Wells PP; Gibson EK; Dimitratos N
    ChemCatChem; 2015 Oct; 7(20):3322-3331. PubMed ID: 26583051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    Chem Soc Rev; 2015 Oct; 44(20):7025-43. PubMed ID: 25917850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution.
    Prasertsab A; Maihom T; Probst M; Wattanakit C; Limtrakul J
    Inorg Chem; 2018 Jun; 57(11):6599-6605. PubMed ID: 29767963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zwitterionic versus canonical amino acids over the various defects in zeolites: a two-layer ONIOM calculation.
    Yang G; Zhou L
    Sci Rep; 2014 Oct; 4():6594. PubMed ID: 25307449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSZ-70 borosilicate delamination without sonication: effect of framework topology on olefin epoxidation catalysis.
    Okrut A; Aigner M; Schöttle C; Grosso-Giordano NA; Hwang SJ; Ouyang X; Zones S; Katz A
    Dalton Trans; 2018 Oct; 47(42):15082-15090. PubMed ID: 30303227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.