These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24407524)

  • 1. Molecular mechanisms of the origin of chromosome aberrations and the structural organisation of eukaryotic DNA.
    Soyfer VN; Akifjev AP
    Theor Appl Genet; 1977 Mar; 50(2):63-72. PubMed ID: 24407524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA damage processing and aberration formation in plants.
    Schubert I; Pecinka A; Meister A; Schubert V; Klatte M; Jovtchev G
    Cytogenet Genome Res; 2004; 104(1-4):104-8. PubMed ID: 15162022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of nonreciprocal chromosome exchanges in irradiated human fibroblasts by fluorescence in situ hybridization.
    Brown JM; Kovacs MS
    Radiat Res; 1993 Oct; 136(1):71-6. PubMed ID: 8210341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the origin of chromosomal aberrations in human peripheral lymphocytes in vitro. I. Experiments with Neurospora endonuclease and polyethylene glycol.
    Nowak C; Obe G
    Hum Genet; 1984; 66(4):335-43. PubMed ID: 6327498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair and chromosomal damage.
    Bryant PE
    Radiother Oncol; 2004 Sep; 72(3):251-6. PubMed ID: 15450722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin.
    Pantelias GE; Terzoudi GI
    Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G1 arrest and cell-cycle-dependent clastogenesis in UV-irradiated human fibroblasts.
    Kaufmann WK; Wilson SJ
    Mutat Res; 1994 Jan; 314(1):67-76. PubMed ID: 7504193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of formation of exchanges and rejoining of breaks in human G0 and G2 lymphocytes after low-LET radiation.
    Sipi P; Lindholm C; Salomaa S
    Int J Radiat Biol; 2000 Jun; 76(6):823-30. PubMed ID: 10902737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of wortmannin on radiation-induced chromosome aberration formation in the radioresistant tumor cell line WiDr.
    Virsik-Köpp P; Hofman-Hüther H; Rave-Fränk M; Schmidberger H
    Radiat Res; 2005 Aug; 164(2):148-56. PubMed ID: 16138421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonhomologous DNA end rejoining in chromosomal aberration formation.
    Yates BL; Morgan WF
    Mutat Res; 1993 Jan; 285(1):53-60. PubMed ID: 7678133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome aberration types in cells irradiated in G1 with nutrient depletion.
    Moore RC
    Cytobios; 1985; 43(172-173):247-52. PubMed ID: 4075849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of repair inhibition in the G1 phase of clastogen-treated human lymphocytes on the frequencies of chromosome-type and chromatid-type aberrations and sister-chromatid exchanges.
    Kishi K
    Mutat Res; 1987 Jan; 176(1):105-16. PubMed ID: 3796655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of G2-dependent DNA double-strand break repair in the formation of ultraviolet light B-induced chromosomal aberrations.
    Ishii Y; Ikushima T
    Mutat Res; 1999 Jun; 427(2):99-103. PubMed ID: 10393264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The involvement of telomeric sequences in chromosomal aberrations.
    Bouffler SD; Morgan WF; Pandita TK; Slijepcevic P
    Mutat Res; 1996 Nov; 366(2):129-35. PubMed ID: 9001579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of gamma-ray-induced chromosome aberration by 0.5 M NaCl in Chinese hamster cells.
    Kosaka T; Tsukahara M; Kaneko I; Nakano K; Tanaka S; Koide F
    Int J Radiat Biol; 1995 Jun; 67(6):687-91. PubMed ID: 7608632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency, distribution and clonality of chromosome damage in human lymphocytes by multi-color FISH.
    Johnson KL; Tucker JD; Nath J
    Mutagenesis; 1998 May; 13(3):217-27. PubMed ID: 9643579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-PKcs-dependent NHEJ pathway supports the progression of topoisomerase II poison-induced chromosome aberrant cells.
    Elguero ME; de Campos-Nebel M; González-Cid M
    Environ Mol Mutagen; 2012 Oct; 53(8):608-18. PubMed ID: 22987276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells.
    Ponomarev AL; George K; Cucinotta FA
    Radiat Res; 2014 Mar; 181(3):284-92. PubMed ID: 24611656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.