These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24407524)

  • 21. Post-treatment effects of DNA topoisomerase inhibitors on UVB- and X-ray-induced chromosomal aberration formations.
    Ishii Y; Ikushima T
    Mutat Res; 2002 Jul; 504(1-2):67-74. PubMed ID: 12106647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosome aberration formation and sister chromatid exchange in relation to DNA repair in human cells.
    Sasaki MS
    Basic Life Sci; 1980; 15():285-313. PubMed ID: 7011308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From DNA damage to chromosome aberrations: joining the break.
    Durante M; Bedford JS; Chen DJ; Conrad S; Cornforth MN; Natarajan AT; van Gent DC; Obe G
    Mutat Res; 2013 Aug; 756(1-2):5-13. PubMed ID: 23707699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [DNA molecule interaction in the contact mechanism of chromosome aberration formation].
    Romanov VP
    Genetika; 1980 Apr; 16(4):634-43. PubMed ID: 7192239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The spontaneous frequency of chromosomal aberrations and sister-chromatid exchanges in cultured peripheral lymphocytes of a single blood donor sampled more than 200 times.
    Andersson HC
    Mutat Res; 1993 Apr; 286(2):281-92. PubMed ID: 7681540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes, using PCC and FISH.
    Darroudi F; Fomina J; Meijers M; Natarajan AT
    Mutat Res; 1998 Aug; 404(1-2):55-65. PubMed ID: 9729276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms involved in the production of chromosomal aberrations. II. Utilization of Neurospora endonuclease for the study of aberration production by X-rays in G1 and G2 stages of the cell cycle.
    Natarajan AT; Obe G; van Zeeland AA; Palitti F; Meijers M; Verdegaal-Immerzeel EA
    Mutat Res; 1980 Feb; 69(2):293-305. PubMed ID: 6244487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations.
    Boei JJ; Vermeulen S; Mullenders LH; Natarajan AT
    Int J Radiat Biol; 2001 Aug; 77(8):847-57. PubMed ID: 11571018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal aberration types in cells at the second division after irradiation in G1 or G2.
    Moore RC; Bender MA
    Int J Radiat Biol; 1993 Jun; 63(6):731-41. PubMed ID: 8100260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal instability in an oxygen-tolerant variant of Chinese hamster ovary cells.
    Gille JJ; Mullaart E; Vijg J; Leyva AL; Arwert F; Joenje H
    Mutat Res; 1989 Jan; 219(1):17-28. PubMed ID: 2911268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Telomere staining of human chromosomes and the mechanism of radiation-induced dicentric formation.
    Cornforth MN; Meyne J; Littlefield LG; Bailey SM; Moyzis RK
    Radiat Res; 1989 Nov; 120(2):205-12. PubMed ID: 2482516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models.
    Kaina B; Ziouta A; Ochs K; Coquerelle T
    Mutat Res; 1997 Nov; 381(2):227-41. PubMed ID: 9434879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of chromosomal aberrations and SCE by chloramphenicol.
    Sbrana I; Caretto S; Rainaldi G; Loprieno N
    Mutat Res; 1991 May; 248(1):145-53. PubMed ID: 2030703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of inverted dimer plasmids after transformation of yeast with linearized plasmid DNA.
    Kunes S; Botstein D; Fox MS
    Cold Spring Harb Symp Quant Biol; 1984; 49():617-28. PubMed ID: 6397317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on chromosome aberration induction: what can they tell us about DNA repair?
    Bailey SM; Bedford JS
    DNA Repair (Amst); 2006 Sep; 5(9-10):1171-81. PubMed ID: 16814619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caffeine post-treatment causes a shift in the chromosome aberration types induced by mitomycin C, suggesting a caffeine-sensitive mechanism of DNA repair in G2.
    Ceccherini I; Loprieno N; Sbrana I
    Mutagenesis; 1988 Jan; 3(1):39-44. PubMed ID: 3128718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosome aberrations in normal human fibroblasts analyzed in G0/G1 and G2/M phases after exposure in G0 to radiation with different linear energy transfer (LET).
    Liu C; Kawata T; Furusawa Y; Zhou G; Inoue K; Fukada J; Kota R; George K; Cucinotta F; Okayasu R
    Mutat Res; 2013 Aug; 756(1-2):101-7. PubMed ID: 23688614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome.
    Meyer-Kuhn E; Therman E
    Chromosoma; 1979 Aug; 73(3):275-86. PubMed ID: 510071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The rejoining of DNA double-strand breaks and a model for the formation of chromosomal rearrangements.
    Chadwick KH; Leenhouts HP
    Int J Radiat Biol Relat Stud Phys Chem Med; 1978 Jun; 33(6):517-29. PubMed ID: 308051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The induction of chromosomal aberrations and SCEs by visible light in combination with dyes. II. Cell cycle dependence, and the effect of hydroxyl radical scavengers during light exposure in cultures of Chinese hamster ovary cells sensitized with acridine orange.
    Uggla AH
    Mutat Res; 1990 Aug; 231(2):233-42. PubMed ID: 2166908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.