These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24407808)

  • 21. [Allelopathy of Andrographis paniculata vegetative].
    Li M; Zhou XY; Lu ZH
    Zhong Yao Cai; 2010 Dec; 33(12):1829-33. PubMed ID: 21548354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allelochemical root-growth inhibitors in low-molecular-weight cress-seed exudate.
    Khan MI; Begum RA; Franková L; Fry SC
    Ann Bot; 2024 Apr; 133(3):447-458. PubMed ID: 38141653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors Influencing Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans.
    Rahman M; Punja ZK
    Phytopathology; 2005 Dec; 95(12):1381-90. PubMed ID: 18943548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.
    Schroeder KL; Paulitz TC
    Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of inoculum density and substrate type on saprophytic survival of Phytophthora drechsleri, the causal agent of gummosis (crown and root rot) on pistachio in Rafsanjan, Iran.
    Saberi-Riseh R; Hajieghrari B; Rouhani H; Sharifi-Tehrani A
    Commun Agric Appl Biol Sci; 2004; 69(4):653-6. PubMed ID: 15756853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Secondary embryonary root associated with seed germination in Garcinia intermedia (Clusiaceae) and its possible role in seedling survival].
    Di Stefano JF; Marín WA; Díaz MA
    Rev Biol Trop; 2006 Sep; 54(3):927-34. PubMed ID: 18491634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of an autotoxic compound in asparagus decline.
    Kato-Noguchi H; Nakamura K; Okuda N
    J Plant Physiol; 2018; 224-225():49-55. PubMed ID: 29597067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dendryphion penicillatum and Pleospora papaveracea, Destructive Seedborne Pathogens and Potential Mycoherbicides for Papaver somniferum.
    O'Neill NR; Jennings JC; Bailey BA; Farr DF
    Phytopathology; 2000 Jul; 90(7):691-8. PubMed ID: 18944487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autotoxic inhibition of seed germination by Typha latifolia: an evaluation.
    Grace JB
    Oecologia; 1983 Sep; 59(2-3):366-369. PubMed ID: 28310259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainable valorization of co-products from asparagus cultivation by obtaining bioactive compounds.
    Alcaide IV; Hamdi A; Guilleín-Bejarano R; Jiménez-Araujo A; Rodríguez-Arcos R
    Front Plant Sci; 2023; 14():1199436. PubMed ID: 37521938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes.
    Cayuela ML; Millner PD; Meyer SL; Roig A
    Sci Total Environ; 2008 Jul; 399(1-3):11-8. PubMed ID: 18471866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran.
    Ahmadzadeh M; Sharifi-Tehrani A
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):943-52. PubMed ID: 17390843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system.
    Jablasone J; Warriner K; Griffiths M
    Int J Food Microbiol; 2005 Mar; 99(1):7-18. PubMed ID: 15718025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of allelopathic potential of sorghum residues by novel indexing of richards' function fitted to cumulative cress seed germination curves.
    Lehle FR; Putnam AR
    Plant Physiol; 1982 May; 69(5):1212-6. PubMed ID: 16662372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial distribution and temporal development of fusarium crown and root rot of tomato and pathogen dissemination in field soil.
    Rekah Y; Shtienberg D; Katan J
    Phytopathology; 1999 Sep; 89(9):831-9. PubMed ID: 18944713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allelopathic effects of western ragweed on seed germination and seedling growth of selected plants.
    Dalrymple RL; Rogers JL
    J Chem Ecol; 1983 Aug; 9(8):1073-8. PubMed ID: 24407801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous determination of three phytoecdysteroids in the roots of four medicinal plants from the genus Asparagus by HPLC.
    Wu JJ; Cheng KW; Wang H; Ye WC; Li ET; Wang M
    Phytochem Anal; 2009; 20(1):58-63. PubMed ID: 19086092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Allelopathic effects of giant foxtail on germination and radicle elongation of loblolly pine seed.
    Gilmore AR
    J Chem Ecol; 1985 May; 11(5):583-92. PubMed ID: 24310124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.