BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 24408074)

  • 21. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering.
    Oh CH; Hong SJ; Jeong I; Yu HS; Jegal SH; Kim HW
    Tissue Eng Part C Methods; 2010 Aug; 16(4):561-71. PubMed ID: 19722827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells.
    Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y
    J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
    Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW
    Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source.
    Mellor LF; Mohiti-Asli M; Williams J; Kannan A; Dent MR; Guilak F; Loboa EG
    Tissue Eng Part A; 2015 Sep; 21(17-18):2323-33. PubMed ID: 26035347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds: assessment of cell attachment, proliferation and extracellular matrix production.
    Helen W; Merry CL; Blaker JJ; Gough JE
    Biomaterials; 2007 Apr; 28(11):2010-20. PubMed ID: 17250887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term in vitro degradation of PDLLA/bioglass bone scaffolds in acellular simulated body fluid.
    Blaker JJ; Nazhat SN; Maquet V; Boccaccini AR
    Acta Biomater; 2011 Feb; 7(2):829-40. PubMed ID: 20849987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering.
    Chen M; Le DQ; Baatrup A; Nygaard JV; Hein S; Bjerre L; Kassem M; Zou X; Bünger C
    Acta Biomater; 2011 May; 7(5):2244-55. PubMed ID: 21195810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human fibroblast-derived extracellular matrix constructs for bone tissue engineering applications.
    Tour G; Wendel M; Tcacencu I
    J Biomed Mater Res A; 2013 Oct; 101(10):2826-37. PubMed ID: 23471711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Osteogenic effect of peptides anchored aminated tissue engineered bone for repairing femoral defect in rats].
    Xu Z; Chen J; Xu W; Zhu X; Wang C; Luo H; Li G; Chen R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):520-8. PubMed ID: 23879086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics.
    Liu Q; Cen L; Yin S; Chen L; Liu G; Chang J; Cui L
    Biomaterials; 2008 Dec; 29(36):4792-9. PubMed ID: 18823660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo.
    Zhu DY; Lu B; Yin JH; Ke QF; Xu H; Zhang CQ; Guo YP; Gao YS
    Int J Nanomedicine; 2019; 14():1085-1100. PubMed ID: 30804672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications.
    Roether JA; Boccaccini AR; Hench LL; Maquet V; Gautier S; Jérĵme R
    Biomaterials; 2002 Sep; 23(18):3871-8. PubMed ID: 12164192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering.
    Maisani M; Ziane S; Ehret C; Levesque L; Siadous R; Le Meins JF; Chevallier P; Barthélémy P; De Oliveira H; Amédée J; Mantovani D; Chassande O
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1489-e1500. PubMed ID: 28875562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.