BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 24408303)

  • 1. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures.
    Jen CP; Chen TW
    Biomed Microdevices; 2009 Jun; 11(3):597-607. PubMed ID: 19104941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping.
    Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M
    Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct current dielectrophoretic simulation of proteins using an array of circular insulating posts.
    Ivory CF; Srivastava SK
    Electrophoresis; 2011 Sep; 32(17):2323-30. PubMed ID: 23361922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective concentration of human cancer cells using contactless dielectrophoresis.
    Henslee EA; Sano MB; Rojas AD; Schmelz EM; Davalos RV
    Electrophoresis; 2011 Sep; 32(18):2523-9. PubMed ID: 21922494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing.
    Srivastava SK; Artemiou A; Minerick AR
    Electrophoresis; 2011 Sep; 32(18):2530-40. PubMed ID: 21922495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results.
    Moncada-Hernandez H; Baylon-Cardiel JL; Pérez-González VH; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2502-11. PubMed ID: 21853448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device.
    Nakano A; Chao TC; Camacho-Alanis F; Ros A
    Electrophoresis; 2011 Sep; 32(17):2314-22. PubMed ID: 21792990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing and continuous separation of microparticles by insulator-based dielectrophoresis (iDEP) in stair-shaped microchannel.
    Cheri MS; Latifi H; Khashei H; Seresht MJ
    Electrophoresis; 2014 Dec; 35(24):3523-32. PubMed ID: 25256784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
    Hyun KA; Jung HI
    Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis.
    Gan L; Chao TC; Camacho-Alanis F; Ros A
    Anal Chem; 2013 Dec; 85(23):11427-34. PubMed ID: 24156514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water.
    Lapizco-Encinas BH; Davalos RV; Simmons BA; Cummings EB; Fintschenko Y
    J Microbiol Methods; 2005 Sep; 62(3):317-26. PubMed ID: 15941604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography.
    Nasabi M; Khoshmanesh K; Tovar-Lopez FJ; Kalantar-Zadeh K; Mitchell A
    Electrophoresis; 2013 Dec; 34(22-23):3150-4. PubMed ID: 24347270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical forces for microscale cell manipulation.
    Voldman J
    Annu Rev Biomed Eng; 2006; 8():425-54. PubMed ID: 16834563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.