BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 24408303)

  • 21. DC-Dielectrophoretic separation of biological cells by size.
    Kang Y; Li D; Kalams SA; Eid JE
    Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new design for efficient dielectrophoretic separation of cells in a microdevice.
    Jubery TZ; Dutta P
    Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A portable and integrated instrument for cell manipulation by dielectrophoresis.
    Burgarella S; Di Bari M
    Electrophoresis; 2015 Jul; 36(13):1466-70. PubMed ID: 25808778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis.
    Weiss NG; Jones PV; Mahanti P; Chen KP; Taylor TJ; Hayes MA
    Electrophoresis; 2011 Sep; 32(17):2292-7. PubMed ID: 21823129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction.
    Salomon S; Leichlé T; Nicu L
    Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of Langerhans islets by dielectrophoresis.
    Burgarella S; Merlo S; Figliuzzi M; Remuzzi A
    Electrophoresis; 2013 Apr; 34(7):1068-75. PubMed ID: 23161152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insulator-based dielectrophoresis combined with the isomotive AC electric field and applied to single cell analysis.
    Tada S; Eguchi M; Okano K
    Electrophoresis; 2019 May; 40(10):1494-1497. PubMed ID: 30672595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X; Xu J
    Electrophoresis; 2018 Mar; 39(5-6):869-877. PubMed ID: 28975645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. nDEP microwells for single-cell patterning in physiological media.
    Mittal N; Rosenthal A; Voldman J
    Lab Chip; 2007 Sep; 7(9):1146-53. PubMed ID: 17713613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel.
    Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M
    Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dielectrophoresis of lambda-DNA using 3D carbon electrodes.
    Martinez-Duarte R; Camacho-Alanis F; Renaud P; Ros A
    Electrophoresis; 2013 Apr; 34(7):1113-22. PubMed ID: 23348619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical modelling and measurement of cell trajectories in 3-D under the influence of dielectrophoretic and hydrodynamic forces.
    Holzner F; Hagmeyer B; Schütte J; Kubon M; Angres B; Stelzle M
    Electrophoresis; 2011 Sep; 32(17):2366-76. PubMed ID: 23361923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.