These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24408648)

  • 21. Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling.
    Rudi H; Sandve SR; Opseth LM; Larsen A; Rognli OA
    Plant Sci; 2011 Jan; 180(1):78-85. PubMed ID: 21421350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repetitive DNA: A Versatile Tool for Karyotyping in Festuca pratensis Huds.
    Křivánková A; Kopecký D; Stočes Š; Doležel J; Hřibová E
    Cytogenet Genome Res; 2017; 151(2):96-105. PubMed ID: 28334706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome balance in six successive generations of the allotetraploid Festuca pratensis x Lolium perenne.
    Zwierzykowski Z; Kosmala A; Zwierzykowska E; Jones N; Jokś W; Bocianowski J
    Theor Appl Genet; 2006 Aug; 113(3):539-47. PubMed ID: 16773330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F. arundinacea and F. pratensis.
    McLeod AR; Rey A; Newsham KK; Lewis GC; Wolferstam P
    J Photochem Photobiol B; 2001 Sep; 62(1-2):97-107. PubMed ID: 11693372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression of XET-related genes in the leaf elongation zone of F. pratensis.
    Reidy B; Nösberger J; Fleming A
    J Exp Bot; 2001 Sep; 52(362):1847-56. PubMed ID: 11520873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.).
    Alm V; Busso CS; Ergon A; Rudi H; Larsen A; Humphreys MW; Rognli OA
    Theor Appl Genet; 2011 Aug; 123(3):369-82. PubMed ID: 21505831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue.
    Wei Q; Guo Y; Kuai B
    Plant Cell Rep; 2011 Jul; 30(7):1201-7. PubMed ID: 21327390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular diversity of local Norwegian meadow fescue (Festuca pratensis Huds.) populations and Nordic cultivars-consequences for management and utilisation.
    Fjellheim S; Rognli OA
    Theor Appl Genet; 2005 Aug; 111(4):640-50. PubMed ID: 16034583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.).
    Gao C; Liu J; Nielsen KK
    Plant Cell Rep; 2009 Sep; 28(9):1431-7. PubMed ID: 19603171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosome pairing in triploid intergeneric hybrids of Festuca pratensis with Lolium multiflorum, revealed by GISH.
    Kosmala A; Zwierzykowska E; Zwierzykowski Z
    J Appl Genet; 2006; 47(3):215-20. PubMed ID: 16877799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum.
    Kosmala A; Zwierzykowski Z; Gasior D; Rapacz M; Zwierzykowska E; Humphreys MW
    Heredity (Edinb); 2006 Mar; 96(3):243-51. PubMed ID: 16449983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.
    Roca M; James C; Pruzinská A; Hörtensteiner S; Thomas H; Ougham H
    Phytochemistry; 2004 May; 65(9):1231-8. PubMed ID: 15184007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pigment content and leaf plastid ultrastructure in the tomato mutant lutescent-2.
    Fornasiero RB; Bonatti PM
    J Plant Physiol; 1985 Mar; 118(4):297-307. PubMed ID: 23196072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The chromosomes of Festuca pratensis Huds. (Poaceae): fluorochrome banding, heterochromatin and condensation.
    Raskina OM; Rodionov AV; Smirnov AF
    Chromosome Res; 1995 Jan; 3(1):66-8. PubMed ID: 7704419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nondestructive analysis of senescence in mesophyll cells by spectral resolution of protein synthesis-dependent pigment metabolism.
    Gay A; Thomas H; Roca M; James C; Taylor J; Rowland J; Ougham H
    New Phytol; 2008; 179(3):663-674. PubMed ID: 18346109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ForageGrassBase: molecular resource for the forage grass meadow fescue (Festuca pratensis Huds.).
    Samy JKA; Rognli OA; Kovi MR
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32539086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species.
    Pawłowicz I; Rapacz M; Perlikowski D; Gondek K; Kosmala A
    J Appl Genet; 2017 Nov; 58(4):421-435. PubMed ID: 28779288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance.
    Kosmala A; Bocian A; Rapacz M; Jurczyk B; Zwierzykowski Z
    J Exp Bot; 2009; 60(12):3595-609. PubMed ID: 19553368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.).
    Wang ZY; Vallés MP; Montavon P; Potrykus I; Spangenberg G
    Plant Cell Rep; 1993 Jan; 12(2):95-100. PubMed ID: 24202076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression of alpha- and beta-expansin genes in the elongating leaf of Festuca pratensis.
    Reidy B; McQueen-Mason S; Nösberger J; Fleming A
    Plant Mol Biol; 2001 Jul; 46(4):491-504. PubMed ID: 11485205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.