These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24408690)

  • 1. The effects of 2,4-dinitrophenol and chemical modifying reagents on auxin transport by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1979 Jan; 144(2):173-8. PubMed ID: 24408690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The specificity of carrier-mediated auxin transport by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1977 Jan; 135(3):275-83. PubMed ID: 24420094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Components of auxin transport in stem segments of Pisum sativum L.
    Davies PJ; Rubery PH
    Planta; 1978 Jan; 142(2):211-9. PubMed ID: 24408105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen ion dependence of carrier-mediated auxin uptake by suspension-cultured crown gall cells.
    Rubery PH
    Planta; 1978 Jan; 142(2):203-6. PubMed ID: 24408103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-mediated auxin transport.
    Rubery PH; Sheldrake AR
    Planta; 1974 Jun; 118(2):101-21. PubMed ID: 24442257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid.
    Sabater M; Rubery PH
    Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor.
    Karabaghli-Degron C; Sotta B; Bonnet M; Gay G; LE Tacon F
    New Phytol; 1998 Dec; 140(4):723-733. PubMed ID: 33862952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid.
    Johnson CF; Morris DA
    Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of auxin and its polar transport inhibitor on the development of somatic embryos in
    Verma SK; Das AK; Gantait S; Gurel S; Gurel E
    3 Biotech; 2018 Feb; 8(2):99. PubMed ID: 29430361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin transport in membrane vesicles from Cucurbita pepo L.
    Hertel R; Lomax TL; Briggs WR
    Planta; 1983 Apr; 157(3):193-201. PubMed ID: 24264147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta.
    Dibb-Fuller JE; Morris DA
    Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin Transport in Suspension-Cultured Soybean Root Cells : II. Anion Effects on Carrier-Mediated Uptake.
    Loper MT; Spanswick RM
    Plant Physiol; 1991 May; 96(1):192-7. PubMed ID: 16668151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor.
    Rincón A; Priha O; Sotta B; Bonnet M; Le Tacon F
    Tree Physiol; 2003 Aug; 23(11):785-91. PubMed ID: 12839732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-Derived Smoke Mitigates the Inhibitory Effects of the Auxin Inhibitor 2,3,5-Triiodo Benzoic Acid (TIBA) by Enhancing Root Architecture and Biochemical Parameters in Maize.
    Ullah G; Ibrahim M; Nawaz G; Khatoon A; Jamil M; Rehman SU; Ali EA; Tariq A
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells.
    Delbarre A; Muller P; Imhoff V; Guern J
    Planta; 1996 Apr; 198(4):532-541. PubMed ID: 28321663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.