BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2440888)

  • 41. Histone release during transcription: acetylation stabilizes the interaction of the H2A-H2B dimer with the H3-H4 tetramer in nucleosomes that are on highly positively coiled DNA.
    Wunsch A; Jackson V
    Biochemistry; 2005 Dec; 44(49):16351-64. PubMed ID: 16331996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response.
    Mimnaugh EG; Chen HY; Davie JR; Celis JE; Neckers L
    Biochemistry; 1997 Nov; 36(47):14418-29. PubMed ID: 9398160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase.
    O'Neill TE; Roberge M; Bradbury EM
    J Mol Biol; 1992 Jan; 223(1):67-78. PubMed ID: 1731087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1.
    Spangenberg C; Eisfeld K; Stünkel W; Luger K; Flaus A; Richmond TJ; Truss M; Beato M
    J Mol Biol; 1998 May; 278(4):725-39. PubMed ID: 9614938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nature of the interaction of nucleosomes with a eukaryotic RNA polymerase II.
    Lilley DM; Jacobs MF; Houghton M
    Nucleic Acids Res; 1979 Sep; 7(2):377-99. PubMed ID: 493150
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Overcoming a nucleosomal barrier to transcription.
    Studitsky VM; Clark DJ; Felsenfeld G
    Cell; 1995 Oct; 83(1):19-27. PubMed ID: 7553869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1.
    Krajewski WA
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129497. PubMed ID: 31785324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The structure of sub-nucleosomal particles. The octameric (H3/H4)4--125-base-pair-DNA complex.
    Read CM; Crane-Robinson C
    Eur J Biochem; 1985 Oct; 152(1):143-50. PubMed ID: 4043075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction, analysis, and transcription of model nucleosomal templates.
    Walter W; Studitsky VM
    Methods; 2004 May; 33(1):18-24. PubMed ID: 15039083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation.
    Thiriet C; Hayes JJ
    Results Probl Cell Differ; 2006; 41():77-90. PubMed ID: 16909891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Primary organization of nucleosomal core particles is invariable in repressed and active nuclei from animal, plant and yeast cells.
    Bavykin SG; Usachenko SI; Lishanskaya AI; Shick VV; Belyavsky AV; Undritsov IM; Strokov AA; Zalenskaya IA; Mirzabekov AD
    Nucleic Acids Res; 1985 May; 13(10):3439-59. PubMed ID: 4011430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. I. Characterization of core enzyme open complexes.
    Hansen UM; McClure WR
    J Biol Chem; 1980 Oct; 255(20):9556-63. PubMed ID: 7000758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism.
    Walter W; Studitsky VM
    J Biol Chem; 2001 Aug; 276(31):29104-10. PubMed ID: 11390400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of high mobility group-I (Y) nonhistone proteins with nucleosome core particles.
    Reeves R; Nissen MS
    J Biol Chem; 1993 Oct; 268(28):21137-46. PubMed ID: 8407950
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histone octamer dissociation is not required for transcript elongation through arrays of nucleosome cores by phage T7 RNA polymerase in vitro.
    O'Neill TE; Smith JG; Bradbury EM
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6203-7. PubMed ID: 8327500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome.
    Arimura Y; Tachiwana H; Oda T; Sato M; Kurumizaka H
    Biochemistry; 2012 Apr; 51(15):3302-9. PubMed ID: 22448809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromatin remodeling by RNA polymerases.
    Studitsky VM; Walter W; Kireeva M; Kashlev M; Felsenfeld G
    Trends Biochem Sci; 2004 Mar; 29(3):127-35. PubMed ID: 15003270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleosome transcription studied in a real-time synchronous system: test of the lexosome model and direct measurement of effects due to histone octamer.
    Protacio RU; Widom J
    J Mol Biol; 1996 Mar; 256(3):458-72. PubMed ID: 8604131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcription of DNA-histone complexes by yeast RNA polymerase B.
    Karagyozov LK; Valkanov MA; Hadjiolov AA
    Nucleic Acids Res; 1978 Jun; 5(6):1907-17. PubMed ID: 353733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.