These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24408954)

  • 1. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.
    Chen CC; Bajnath A; Brumberg JC
    Cereb Cortex; 2015 Jun; 25(6):1638-53. PubMed ID: 24408954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex.
    Orner DA; Chen CC; Orner DE; Brumberg JC
    Brain Struct Funct; 2014 Sep; 219(5):1709-20. PubMed ID: 23779157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.
    Chen CC; Tam D; Brumberg JC
    Brain Struct Funct; 2012 Apr; 217(2):435-46. PubMed ID: 21861159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral whisker trimming during early postnatal life impairs dendritic spine development in the mouse somatosensory barrel cortex.
    Briner A; De Roo M; Dayer A; Muller D; Kiss JZ; Vutskits L
    J Comp Neurol; 2010 May; 518(10):1711-23. PubMed ID: 20235164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia.
    Portera-Cailliau C; Pan DT; Yuste R
    J Neurosci; 2003 Aug; 23(18):7129-42. PubMed ID: 12904473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient effects of anesthetics on dendritic spines and filopodia in the living mouse cortex.
    Yang G; Chang PC; Bekker A; Blanck TJ; Gan WB
    Anesthesiology; 2011 Oct; 115(4):718-26. PubMed ID: 21768874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo.
    Lendvai B; Stern EA; Chen B; Svoboda K
    Nature; 2000 Apr; 404(6780):876-81. PubMed ID: 10786794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and sensory experience dependent regulation of microglia in barrel cortex.
    Kalambogias J; Chen CC; Khan S; Son T; Wercberger R; Headlam C; Lin C; Brumberg JC
    J Comp Neurol; 2020 Mar; 528(4):559-573. PubMed ID: 31502243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
    Itami C; Kimura F
    J Neurosci; 2012 Oct; 32(43):15000-11. PubMed ID: 23100422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons.
    Shoykhet M; Land PW; Simons DJ
    J Neurophysiol; 2005 Dec; 94(6):3987-95. PubMed ID: 16093330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid adult experience-dependent anatomical plasticity in layer IV of primary somatosensory cortex.
    Chau LS; Akhtar O; Mohan V; Kondilis A; Galvez R
    Brain Res; 2014 Jan; 1543():93-100. PubMed ID: 24183785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex.
    Zuo Y; Yang G; Kwon E; Gan WB
    Nature; 2005 Jul; 436(7048):261-5. PubMed ID: 16015331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system.
    Lee LJ; Chen WJ; Chuang YW; Wang YC
    Exp Neurol; 2009 Oct; 219(2):524-32. PubMed ID: 19619534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex.
    Breton JD; Stuart GJ
    J Physiol; 2009 Nov; 587(Pt 21):5107-19. PubMed ID: 19736297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
    Huang W; Armstrong-James M; Rema V; Diamond ME; Ebner FF
    J Neurophysiol; 1998 Dec; 80(6):3261-71. PubMed ID: 9862920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience-dependent increase in spine calcium evoked by backpropagating action potentials in layer 2/3 pyramidal neurons in rat somatosensory cortex.
    Krieger P
    Eur J Neurosci; 2009 Nov; 30(10):1870-7. PubMed ID: 19912332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent maintenance and growth of dendrites in adult cortex.
    Tailby C; Wright LL; Metha AB; Calford MB
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4631-6. PubMed ID: 15767584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent alteration of zinc-containing circuits in somatosensory cortex of the mouse.
    Quaye VL; Shamalla-Hannah L; Land PW
    Brain Res Dev Brain Res; 1999 May; 114(2):283-7. PubMed ID: 10320770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex.
    Datwani A; Iwasato T; Itohara S; Erzurumlu RS
    Mol Cell Neurosci; 2002 Nov; 21(3):477-92. PubMed ID: 12498788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.