These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 24408957)

  • 1. Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans.
    Christiansen L; Urbin MA; Mitchell GS; Perez MA
    Elife; 2018 Apr; 7():. PubMed ID: 29688171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hebbian priming of human motor learning.
    Bjørndal JR; Beck MM; Jespersen L; Christiansen L; Lundbye-Jensen J
    Nat Commun; 2024 Jun; 15(1):5126. PubMed ID: 38879614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior.
    Nishimura Y; Perlmutter SI; Eaton RW; Fetz EE
    Neuron; 2013 Dec; 80(5):1301-9. PubMed ID: 24210907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cerebellar transcranial magnetic stimulation on soleus Ia presynaptic and reciprocal inhibition.
    Matsugi A; Mori N; Uehara S; Kamata N; Oku K; Okada Y; Kikuchi Y; Mukai K; Nagano K
    Neuroreport; 2015 Feb; 26(3):139-43. PubMed ID: 25569794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Profile of Descending Cortical Modulation of Spinal Excitability: Group and Individual-Specific Effects.
    Xu J; Lopez AJ; Hoque MM; Borich MR; Kesar TM
    Front Integr Neurosci; 2021; 15():777741. PubMed ID: 35197831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcutaneous spinal direct current stimulation increases corticospinal transmission and enhances voluntary motor output in humans.
    Yamaguchi T; Beck MM; Therkildsen ER; Svane C; Forman C; Lorentzen J; Conway BA; Lundbye-Jensen J; Geertsen SS; Nielsen JB
    Physiol Rep; 2020 Aug; 8(16):e14531. PubMed ID: 32812363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive assessment of superficial and deep layer circuits in human motor cortex.
    Kurz A; Xu W; Wiegel P; Leukel C; N Baker S
    J Physiol; 2019 Jun; 597(12):2975-2991. PubMed ID: 31045242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dynamical System Framework for Theorizing Preparatory Inhibition.
    Derosiere G
    J Neurosci; 2018 Apr; 38(14):3391-3393. PubMed ID: 29618545
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability.
    Jimenez S; Mordillo-Mateos L; Dileone M; Campolo M; Carrasco-Lopez C; Moitinho-Ferreira F; Gallego-Izquierdo T; Siebner HR; Valls-Solé J; Aguilar J; Oliviero A
    PLoS One; 2018; 13(2):e0192471. PubMed ID: 29451889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive Assessment of Changes in Corticomotoneuronal Transmission in Humans.
    Taube W; Leukel C; Nielsen JB; Lundbye-Jensen J
    J Vis Exp; 2017 May; (123):. PubMed ID: 28570549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute corticospinal and spinal modulation after whole body vibration.
    Krause A; Gollhofer A; Freyler K; Jablonka L; Ritzmann R
    J Musculoskelet Neuronal Interact; 2016 Dec; 16(4):327-338. PubMed ID: 27973385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.
    Berghuis KM; Veldman MP; Solnik S; Koch G; Zijdewind I; Hortobágyi T
    Age (Dordr); 2015 Jun; 37(3):9779. PubMed ID: 25956604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury.
    Tazoe T; Perez MA
    Arch Phys Med Rehabil; 2015 Apr; 96(4 Suppl):S145-55. PubMed ID: 25175159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses.
    Taube W; Leukel C; Nielsen JB; Lundbye-Jensen J
    Cereb Cortex; 2015 Jun; 25(6):1629-37. PubMed ID: 24408957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS; Nielsen JB
    J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of motor cortex rTMS on corticospinal descending activity.
    Di Lazzaro V; Profice P; Pilato F; Dileone M; Oliviero A; Ziemann U
    Clin Neurophysiol; 2010 Apr; 121(4):464-73. PubMed ID: 20096628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating human motor control by transcranial magnetic stimulation.
    Petersen NT; Pyndt HS; Nielsen JB
    Exp Brain Res; 2003 Sep; 152(1):1-16. PubMed ID: 12879177
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.