These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24409003)

  • 21. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes.
    Westgate PM
    Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Robust and Powerful Set-Valued Approach to Rare Variant Association Analyses of Secondary Traits in Case-Control Sequencing Studies.
    Kang G; Bi W; Zhang H; Pounds S; Cheng C; Shete S; Zou F; Zhao Y; Zhang JF; Yue W
    Genetics; 2017 Mar; 205(3):1049-1062. PubMed ID: 28040743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency.
    Mukherjee B; Chatterjee N
    Biometrics; 2008 Sep; 64(3):685-694. PubMed ID: 18162111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome.
    Gruber S; van der Laan MJ
    Int J Biostat; 2010; 6(1):Article 26. PubMed ID: 21731529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unified method for detecting secondary trait associations with rare variants: application to sequence data.
    Liu DJ; Leal SM
    PLoS Genet; 2012; 8(11):e1003075. PubMed ID: 23166519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A flexible approach to measurement error correction in case-control studies.
    Guolo A
    Biometrics; 2008 Dec; 64(4):1207-14. PubMed ID: 18325066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flexible likelihood framework for detecting associations with secondary phenotypes in genetic studies using selected samples: application to sequence data.
    Liu DJ; Leal SM
    Eur J Hum Genet; 2012 Apr; 20(4):449-56. PubMed ID: 22166943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cox regression in nested case-control studies with auxiliary covariates.
    Liu M; Lu W; Tseng CH
    Biometrics; 2010 Jun; 66(2):374-81. PubMed ID: 19508242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
    Fan R; Chiu CY; Jung J; Weeks DE; Wilson AF; Bailey-Wilson JE; Amos CI; Chen Z; Mills JL; Xiong M
    Genet Epidemiol; 2016 Dec; 40(8):702-721. PubMed ID: 27374056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Variance-Component Framework for Pedigree Analysis of Continuous and Categorical Outcomes.
    Epstein MP; Hunter JE; Allen EG; Sherman SL; Lin X; Boehnke M
    Stat Biosci; 2009 Nov; 1(2):181-198. PubMed ID: 20436936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A maximum likelihood approach to functional mapping of longitudinal binary traits.
    Wang C; Li H; Wang Z; Wang Y; Wang N; Wang Z; Wu R
    Stat Appl Genet Mol Biol; 2012 Nov; 11(6):Article 2. PubMed ID: 23183762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative trait association in parent offspring trios: Extension of case/pseudocontrol method and comparison of prospective and retrospective approaches.
    Wheeler E; Cordell HJ
    Genet Epidemiol; 2007 Dec; 31(8):813-33. PubMed ID: 17549757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques.
    Griesbach C; Groll A; Bergherr E
    PLoS One; 2021; 16(7):e0254178. PubMed ID: 34242316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A maximum likelihood method for secondary analysis of nested case-control data.
    Salim A; Xiangmei M; Jialiang L; Reilly M
    Stat Med; 2014 May; 33(11):1842-52. PubMed ID: 24753004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary phenotype analysis in ascertained family designs: application to the Leiden longevity study.
    Tissier R; Tsonaka R; Mooijaart SP; Slagboom E; Houwing-Duistermaat JJ
    Stat Med; 2017 Jun; 36(14):2288-2301. PubMed ID: 28303589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of statistical tests for association between rare variants and binary traits.
    Bacanu SA; Nelson MR; Whittaker JC
    PLoS One; 2012; 7(8):e42530. PubMed ID: 22912707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument.
    Spiegelman D; Carroll RJ; Kipnis V
    Stat Med; 2001 Jan; 20(1):139-160. PubMed ID: 11135353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment and management of single nucleotide polymorphism genotype errors in genetic association analysis.
    Gordon D; Ott J
    Pac Symp Biocomput; 2001; ():18-29. PubMed ID: 11262939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximum-Likelihood-Binomial method for genetic model-free linkage analysis of quantitative traits in sibships.
    Alcaïs A; Abel L
    Genet Epidemiol; 1999; 17(2):102-17. PubMed ID: 10414555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pseudo-likelihood method for estimating effective population size from temporally spaced samples.
    Wang J
    Genet Res; 2001 Dec; 78(3):243-57. PubMed ID: 11865714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.