These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2440913)

  • 1. Development of substance P-like immunoreactivity in Xenopus embryos.
    Gallagher BC; Moody SA
    J Comp Neurol; 1987 Jun; 260(2):175-85. PubMed ID: 2440913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation.
    Lamborghini JE
    J Comp Neurol; 1980 Jan; 189(2):323-33. PubMed ID: 7364967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system.
    Fujita N; Saito R; Watanabe K; Nagata S
    Dev Biol; 2000 May; 221(2):308-20. PubMed ID: 10790328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death.
    Reyes R; Haendel M; Grant D; Melancon E; Eisen JS
    Dev Dyn; 2004 Jan; 229(1):30-41. PubMed ID: 14699575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus.
    Nordlander RH
    J Comp Neurol; 1984 Sep; 228(1):117-28. PubMed ID: 6480904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    J Comp Neurol; 1987 Jul; 261(3):435-49. PubMed ID: 3611420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic origin of substance P containing neurons in cranial and spinal sensory ganglia of the avian embryo.
    Fontaine-Perus J; Chanconie M; Le Douarin NM
    Dev Biol; 1985 Jan; 107(1):227-38. PubMed ID: 2578116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials.
    Lamborghini JE; Revenaugh M; Spitzer NC
    J Comp Neurol; 1979 Feb; 183(4):741-52. PubMed ID: 762270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rohon-Beard cells in frog development: a study of temporal and spatial changes in a transient cell population.
    Eichler VB; Porter RA
    J Comp Neurol; 1981 Nov; 203(1):121-30. PubMed ID: 6975782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of substance P immunoreactive cell bodies and fibers in cranial sensory and autonomic ganglia of the chick.
    Strobbia E; Corvetti G; Sisto Daneo L
    Basic Appl Histochem; 1988; 32(1):161-7. PubMed ID: 2455504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoreactivity in Limulus: III. Morphological and biochemical studies of FMRFamide-like immunoreactivity and colocalized substance P-like immunoreactivity in the brain and lateral eye.
    Lewandowski TJ; Lehman HK; Chamberlain SC
    J Comp Neurol; 1989 Oct; 288(1):136-53. PubMed ID: 2477411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substance P and catecholaminergic expression in neurons of the hamster main olfactory bulb.
    Kream RM; Davis BJ; Kawano T; Margolis FL; Macrides F
    J Comp Neurol; 1984 Jan; 222(1):140-54. PubMed ID: 6199381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal growth cones in the developing amphibian spinal cord.
    Nordlander RH
    J Comp Neurol; 1987 Sep; 263(4):485-96. PubMed ID: 3667985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic development of the chick primary trigeminal sensory-motor complex.
    Covell DA; Noden DM
    J Comp Neurol; 1989 Aug; 286(4):488-503. PubMed ID: 2778103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substance P in the vagal sensory ganglia: localization in cell bodies and pericellular arborizations.
    Katz DM; Karten HJ
    J Comp Neurol; 1980 Sep; 193(2):549-64. PubMed ID: 6160166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic and non-catalytic forms of the neurotrophin receptor xTrkB mRNA are expressed in a pseudo-segmental manner within the early Xenopus central nervous system.
    Islam N; Gagnon F; Moss T
    Int J Dev Biol; 1996 Oct; 40(5):973-83. PubMed ID: 8946245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.