These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24409396)

  • 1. Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media.
    Grabtchak S; Callaghan KB; Whelan WM
    Biomed Opt Express; 2013; 4(12):2989-3006. PubMed ID: 24409396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues.
    Grabtchak S; Montgomery LG; Pang B; Wang Y; Zhang C; Li Z; Xia Y; Whelan WM
    Int J Nanomedicine; 2015; 10():1307-20. PubMed ID: 25709450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy.
    Grabtchak S; Palmer TJ; Whelan WM
    J Biomed Opt; 2011 Jul; 16(7):077003. PubMed ID: 21806283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiance detection of non-scattering inclusions in turbid media.
    Grabtchak S; Palmer TJ; Vitkin IA; Whelan WM
    Biomed Opt Express; 2012 Nov; 3(11):3001-11. PubMed ID: 23162735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements.
    Grabtchak S; Whelan WM
    Biomed Opt Express; 2012 Oct; 3(10):2371-80. PubMed ID: 23082279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical detection of gold nanoparticles in a prostate-shaped porcine phantom.
    Grabtchak S; Tonkopi E; Whelan WM
    J Biomed Opt; 2013 Jul; 18(7):077005. PubMed ID: 23864016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental spectro-angular mapping of light distribution in turbid media.
    Grabtchak S; Palmer TJ; Foschum F; Liemert A; Kienle A; Whelan WM
    J Biomed Opt; 2012 Jun; 17(6):067007. PubMed ID: 22734785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media.
    Marijnissen JP; Star WM
    Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry.
    Barajas O; Ballangrud AM; Miller GG; Moore RB; Tulip J
    Phys Med Biol; 1997 Sep; 42(9):1675-87. PubMed ID: 9308075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the surface effect of a small scattering object in a highly scattering medium by use of diffuse photon-pairs density wave.
    Wu JS; Yu LP; Chou C
    J Biomed Opt; 2016 Jun; 21(6):60504. PubMed ID: 27304418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of an optical needle's reflectivity alters the average photon path through scattering media.
    Simonson P; D'Amico E; Gratton E
    J Biomed Opt; 2006; 11(1):014023. PubMed ID: 16526900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical computed tomography in a turbid medium using early arriving photons.
    Chen K; Perelman LT; Zhang Q; Dasari RR; Feld MS
    J Biomed Opt; 2000 Apr; 5(2):144-54. PubMed ID: 10938778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times.
    Pichette J; Domínguez JB; Bérubé-Lauzière Y
    Appl Opt; 2013 Aug; 52(24):5985-99. PubMed ID: 24085003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of optical properties of turbid medium from relative interstitial CW radiance measurements using the incomplete P3 approximation.
    Liu L; Wan W; Qin Z; Zhang L; Jiang J; Wang Y; Gao F; Zhao H
    Opt Express; 2017 Oct; 25(21):25295-25309. PubMed ID: 29041198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification.
    Chin LC; Whelan WM; Vitkin IA
    Appl Opt; 2006 Mar; 45(9):2101-14. PubMed ID: 16579581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of equidistant three-dimensional radiance measurements with optical microprobes.
    Fukshansky-Kazarinova N; Fukshansky L; Kühl M; Jørgensen BB
    Appl Opt; 1996 Jan; 35(1):65-73. PubMed ID: 21068978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light distribution modulated diffuse reflectance spectroscopy.
    Huang PY; Chien CY; Sheu CR; Chen YW; Tseng SH
    Biomed Opt Express; 2016 Jun; 7(6):2118-29. PubMed ID: 27375931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
    Xu M; Alrubaiee M; Gayen SK; Alfano RR
    Appl Opt; 2005 Apr; 44(10):1889-97. PubMed ID: 15818863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.