These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24409396)
21. Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium. Chernomordik V; Hattery DW; Gannot I; Zaccanti G; Gandjbakhche A J Biomed Opt; 2002 Jul; 7(3):486-92. PubMed ID: 12175301 [TBL] [Abstract][Full Text] [Related]
22. Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations. Mourant JR; Boyer J; Hielscher AH; Bigio IJ Opt Lett; 1996 Apr; 21(7):546-8. PubMed ID: 19865467 [TBL] [Abstract][Full Text] [Related]
23. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics. Berrocal E; Meglinski I; Jermy M Opt Express; 2005 Nov; 13(23):9181-95. PubMed ID: 19503117 [TBL] [Abstract][Full Text] [Related]
24. Non-invasive depth determination of inclusion in biological tissues using spatially offset Raman spectroscopy with external calibration. Mosca S; Dey P; Salimi M; Palombo F; Stone N; Matousek P Analyst; 2020 Nov; 145(23):7623-7629. PubMed ID: 33000803 [TBL] [Abstract][Full Text] [Related]
25. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements. Yin L; Wang Q; Zhang Q; Jiang H Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303 [TBL] [Abstract][Full Text] [Related]
26. Probe for evaluating the absorbing and transport scattering properties of turbid fluids using low-cost time-of-flight technology. Hebden JC; Shah R; Chitnis D J Biomed Opt; 2017 May; 22(5):55009. PubMed ID: 28541448 [TBL] [Abstract][Full Text] [Related]
27. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption. Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605 [TBL] [Abstract][Full Text] [Related]
28. Numerical method for studying the detectability of inclusions hidden in optically turbid tissue. Haviin S; Kiefer JE; Trus B; Weiss GH; Nossal R Appl Opt; 1993 Feb; 32(4):617-27. PubMed ID: 20802733 [TBL] [Abstract][Full Text] [Related]
29. Monte Carlo study of pathlength distribution of polarized light in turbid media. Guo X; Wood MF; Vitkin A Opt Express; 2007 Feb; 15(3):1348-60. PubMed ID: 19532365 [TBL] [Abstract][Full Text] [Related]
30. Clean image synthesis and target numerical marching for optical imaging with backscattering light. Xu M; Pu Y; Wang W Biomed Opt Express; 2011 Mar; 2(4):850-7. PubMed ID: 21483608 [TBL] [Abstract][Full Text] [Related]
31. Hybrid algorithm for simulating the collimated transmittance of homogeneous stratified turbid media. Cruzado BM; Atencio JA; Vázquez Y Montiel S; Gómez ES Biomed Opt Express; 2015 May; 6(5):1726-37. PubMed ID: 26137375 [TBL] [Abstract][Full Text] [Related]
32. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations. Yuan Y; Yu L; Doğan Z; Fang Q J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265 [TBL] [Abstract][Full Text] [Related]
33. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection. Grabtchak S; Montgomery LG; Whelan WM J Biomed Opt; 2014 May; 19(5):057003. PubMed ID: 24788374 [TBL] [Abstract][Full Text] [Related]
34. Scattering phase function spectrum makes reflectance spectrum measured from Intralipid phantoms and tissue sensitive to the device detection geometry. Kanick SC; Krishnaswamy V; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A; Pogue BW Biomed Opt Express; 2012 May; 3(5):1086-100. PubMed ID: 22567598 [TBL] [Abstract][Full Text] [Related]
35. Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain. Hebden JC; Arridge SR Appl Opt; 1996 Dec; 35(34):6788-96. PubMed ID: 21151264 [TBL] [Abstract][Full Text] [Related]
36. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution. Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419 [TBL] [Abstract][Full Text] [Related]
37. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media. Sassaroli A Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460 [TBL] [Abstract][Full Text] [Related]
38. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media. Mandelis A; Feng C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565 [TBL] [Abstract][Full Text] [Related]
39. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Vishwanath K; Pogue B; Mycek MA Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827 [TBL] [Abstract][Full Text] [Related]
40. Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media. Mei L; Somesfalean G; Svanberg S Biomed Opt Express; 2014 Aug; 5(8):2810-22. PubMed ID: 25136504 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]