These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24409396)

  • 41. Effective scattering phase functions for the multiple scattering regime.
    Piskozub J; McKee D
    Opt Express; 2011 Feb; 19(5):4786-94. PubMed ID: 21369310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fermat photons in turbid media: an exact analytic solution for most favorable paths-a step toward optical tomography.
    Polishchuk AY; Alfano RR
    Opt Lett; 1995 Oct; 20(19):1937-9. PubMed ID: 19862209
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Picosecond magneto-optical phenomena in turbid media: toward magneto-optical characterization of highly scattering biological samples.
    Munin E
    Appl Opt; 1997 May; 36(13):2990-4. PubMed ID: 18253304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical quantitation of absorbers in variously shaped turbid media based on the microscopic Beer-Lambert law. A new approach to optical computerized tomography.
    Tsuchiya Y; Urakami T
    Ann N Y Acad Sci; 1998 Feb; 838():75-94. PubMed ID: 9511797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effective source term in the diffusion equation for photon transport in turbid media.
    Fantini S; Franceschini MA; Gratton E
    Appl Opt; 1997 Jan; 36(1):156-63. PubMed ID: 18250657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media.
    De Nicola S; Esposito R; Lepore M; Indovina PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031901. PubMed ID: 15089316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lensed fiber-optic probe design for efficient photon collection in scattering media.
    Ryu Y; Shin Y; Lee D; Altarejos JY; Chung E; Kwon HS
    Biomed Opt Express; 2015 Jan; 6(1):191-210. PubMed ID: 25657886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonstationary angular distribution of optical field radiance from an isotropic source in sea water.
    Luchinin AG; Kirillin MY; Dolin LS
    Appl Opt; 2020 Jul; 59(20):6046-6053. PubMed ID: 32672748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Light scattering regimes along the optical axis in turbid media.
    Campbell SD; O'connell AK; Menon S; Su Q; Grobe R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061909. PubMed ID: 17280098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.
    Sawosz P; Kacprzak M; Weigl W; Borowska-Solonynko A; Krajewski P; Zolek N; Ciszek B; Maniewski R; Liebert A
    Phys Med Biol; 2012 Dec; 57(23):7973-81. PubMed ID: 23154664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonlinear effects of localized absorption perturbations on the light distribution in a turbid medium.
    Graber HL; Aronson R; Barbour RL
    J Opt Soc Am A Opt Image Sci Vis; 1998 Apr; 15(4):834-48. PubMed ID: 9536514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope.
    Chang HF; Chou C; Yau HF; Chan YH; Yih JN; Wu JS
    J Microsc; 2006 Jul; 223(Pt 1):26-32. PubMed ID: 16872428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.
    Benmakhlouf H; Andreo P
    Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. General theory of three-dimensional radiance measurements with optical microprobes.
    Fukshansky-Kazarinova N; Fukshansky L; Kühl M; Jørgensen BB
    Appl Opt; 1997 Sep; 36(25):6520-8. PubMed ID: 18259513
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photon path distribution in inhomogeneous turbid media: theoretical analysis and a method of calculation.
    Tsuchiya Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jul; 19(7):1383-9. PubMed ID: 12095206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An analytical approach to the light transport in columnar phosphors. Detector Optical Gain, angular distribution and the CsI:Tl paradigm.
    Psichis K; Kalyvas N; Kandarakis I; Panayiotakis G
    Phys Med; 2017 Mar; 35():39-49. PubMed ID: 28242138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.