These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24410212)

  • 21. The rotational spectrum of diethyl ketone.
    Nguyen HV; Stahl W
    Chemphyschem; 2011 Jul; 12(10):1900-5. PubMed ID: 21445952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the conformational behavior of the doubly substituted methyl-ethyl Criegee intermediate by FTMW spectroscopy.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2017 May; 146(17):174304. PubMed ID: 28477595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared-driven unimolecular reaction of CH₃CHOO Criegee intermediates to OH radical products.
    Liu F; Beames JM; Petit AS; McCoy AB; Lester MI
    Science; 2014 Sep; 345(6204):1596-8. PubMed ID: 25258077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave measurements and ab initio calculations of structural and electronic properties of N-Et-1,2-azaborine.
    Tanjaroon C; Daly A; Marwitz AJ; Liu SY; Kukolich S
    J Chem Phys; 2009 Dec; 131(22):224312. PubMed ID: 20001041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.
    Kim E; Yamamoto S
    J Chem Phys; 2004 Feb; 120(7):3265-9. PubMed ID: 15268480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products.
    Fang Y; Liu F; Klippenstein SJ; Lester MI
    J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave spectrum, r(0) structure, dipole moment, barrier to internal rotation, and Ab initio calculations for fluoromethylsilane.
    Durig JR; Panikar SS; Groner P; Nanaie H; Bürger H; Moritz P
    J Phys Chem A; 2010 Apr; 114(12):4131-7. PubMed ID: 20199043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Apr; 140(13):134302. PubMed ID: 24712788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rotational spectrum of a chiral alpha-hydroxyester: conformation stability and internal rotation barrier heights of methyl lactate.
    Borho N; Xu Y
    Phys Chem Chem Phys; 2007 Mar; 9(11):1324-8. PubMed ID: 17347705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substituent effects on the spectroscopic properties of Criegee intermediates.
    Trabelsi T; Kumar M; Francisco JS
    J Chem Phys; 2017 Oct; 147(16):164303. PubMed ID: 29096470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkynes as CH/π Acceptors: Microwave Spectra and Structures of the CH2F2···Propyne and CH2ClF···Propyne Dimers.
    Ernst AA; Christenholz CL; Dhahir YJ; Peebles SA; Peebles RA
    J Phys Chem A; 2015 Dec; 119(52):12999-3008. PubMed ID: 26692234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rotational spectroscopy of methyl benzoylformate and methyl mandelate: structure and internal dynamics of a model reactant and product of enantioselective reduction.
    Schnitzler EG; Poopari MR; Xu Y; Jäger W
    Phys Chem Chem Phys; 2015 Sep; 17(34):21942-9. PubMed ID: 26234934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational stability from temperature-dependent fourier transform infrared spectra of noble gas solutions, r0 structural parameters, and barriers to internal rotation for ethylamine.
    Durig JR; Zheng C; Gounev TK; Herrebout WA; van der Veken BJ
    J Phys Chem A; 2006 May; 110(17):5674-84. PubMed ID: 16640362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactivity and internal dynamics in the Criegee intermediate CH
    Cabezas C; Daly AM; Endo Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119945. PubMed ID: 34020382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular-Beam Electric-Resonance Optothermal Spectroscopy Study of the Rotational Spectrum of the Less Stable Conformer of Methyl Vinyl Ether.
    McWhorter DA; Cupp SB; Lee CY; Pate BH
    J Mol Spectrosc; 1999 Jan; 193(1):150-158. PubMed ID: 9878495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methyl Internal Rotation in the Microwave Spectrum of o-Methyl Anisole.
    Ferres L; Mouhib H; Stahl W; Nguyen HVL
    Chemphyschem; 2017 Jul; 18(14):1855-1859. PubMed ID: 28481432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The monohydrate and dihydrate of acetic acid: a high-resolution microwave spectroscopic study.
    Ouyang B; Howard BJ
    Phys Chem Chem Phys; 2009 Jan; 11(2):366-73. PubMed ID: 19088993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Structure and Torsional Dynamics of Two Methyl Groups in 2-Acetyl-5-methylfuran as Observed by Microwave Spectroscopy.
    Van V; Stahl W; Nguyen HV
    Chemphyschem; 2016 Oct; 17(20):3223-3228. PubMed ID: 27513894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Microwave Spectrum of m-Tolunitrile: Methyl Internal Rotation and (14)N Nuclear Quadrupole Coupling.
    Bruhn T; Mäder H
    J Mol Spectrosc; 2000 Apr; 200(2):151-161. PubMed ID: 10708528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.