These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 24410213)
1. Communication: the origin of rotational enhancement effect for the reaction of H2O(+) + H2 (D2). Li A; Li Y; Guo H; Lau KC; Xu Y; Xiong B; Chang YC; Ng CY J Chem Phys; 2014 Jan; 140(1):011102. PubMed ID: 24410213 [TBL] [Abstract][Full Text] [Related]
2. The translational, rotational, and vibrational energy effects on the chemical reactivity of water cation H2O+(X 2B1) in the collision with deuterium molecule D2. Xu Y; Xiong B; Chang YC; Ng CY J Chem Phys; 2013 Jul; 139(2):024203. PubMed ID: 23862936 [TBL] [Abstract][Full Text] [Related]
3. Isotopic and quantum-rovibrational-state effects for the ion-molecule reaction in the collision energy range of 0.03-10.00 eV. Xu Y; Xiong B; Chang YC; Ng CY Phys Chem Chem Phys; 2017 Mar; 19(13):8694-8705. PubMed ID: 28295117 [TBL] [Abstract][Full Text] [Related]
4. Comparison of experimental and theoretical quantum-state-selected integral cross-sections for the H2O(+) + H2 (D2) reactions in the collision energy range of 0.04-10.00 eV. Song H; Li A; Guo H; Xu Y; Xiong B; Chang YC; Ng CY Phys Chem Chem Phys; 2016 Aug; 18(32):22509-15. PubMed ID: 27508462 [TBL] [Abstract][Full Text] [Related]
5. Communication: Rovibrationally selected absolute total cross sections for the reaction H2O(+)(X2B1; v1(+)v2(+)v3(+) = 000; N+(Ka+Kc+)) + D2: observation of the rotational enhancement effect. Xu Y; Xiong B; Chang YC; Ng CY J Chem Phys; 2012 Dec; 137(24):241101. PubMed ID: 23277921 [TBL] [Abstract][Full Text] [Related]
6. Chemical Activation of Water Molecule by Collision with Spin-Orbit-State-Selected Vanadium Cation: Quantum-Electronic-State Control of Chemical Reactivity. Xu Y; Chang YC; Parziale M; Wannenmacher A; Ng CY J Phys Chem A; 2020 Oct; 124(43):8884-8896. PubMed ID: 33078936 [TBL] [Abstract][Full Text] [Related]
7. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects. Xu Y; Xiong B; Chang YC; Pan Y; Lo PK; Lau KC; Ng CY Phys Chem Chem Phys; 2017 Apr; 19(15):9778-9789. PubMed ID: 28352920 [TBL] [Abstract][Full Text] [Related]
8. A full-dimensional global potential energy surface of H3O+(ã(3)A) for the OH+(X̃(3)Σ(-)) + H2(X̃(1)Σ(g)(+)) → H(2S) + H2O+(X̃(2)B1) reaction. Li A; Guo H J Phys Chem A; 2014 Nov; 118(47):11168-76. PubMed ID: 25343584 [TBL] [Abstract][Full Text] [Related]
9. Influence of reagent rotation on (H-, D2) and (D-, H2) collisions: a quantum mechanical study. Giri K; Sathyamurthy N J Phys Chem A; 2006 Dec; 110(51):13843-9. PubMed ID: 17181342 [TBL] [Abstract][Full Text] [Related]
10. Radiative charge transfer in He(+) + H2 collisions in the milli- to nano-electron-volt range: a theoretical study within state-to-state and optical potential approaches. Mrugała F; Kraemer WP J Chem Phys; 2013 Mar; 138(10):104315. PubMed ID: 23514497 [TBL] [Abstract][Full Text] [Related]
11. A quantum-rovibrational-state-selected study of the proton-transfer reaction H Xiong B; Chang YC; Ng CY Phys Chem Chem Phys; 2017 Jul; 19(28):18619-18627. PubMed ID: 28692096 [TBL] [Abstract][Full Text] [Related]
12. Rotational and Isotopic Effects in the H2 + OH(+) → H + H2O(+) Reaction. Song H; Li A; Guo H J Phys Chem A; 2016 Jul; 120(27):4742-8. PubMed ID: 26731677 [TBL] [Abstract][Full Text] [Related]
13. Experimental and theoretical kinetics for the H2O+ + H2/D2 → H3O+/H2DO+ + H/D reactions: observation of the rotational effect in the temperature dependence. Ard SG; Li A; Martinez O; Shuman NS; Viggiano AA; Guo H J Phys Chem A; 2014 Dec; 118(49):11485-9. PubMed ID: 25398042 [TBL] [Abstract][Full Text] [Related]
14. Quantum-state-selected integral cross sections for the charge transfer collision of O Xiong B; Chang YC; Ng CY Phys Chem Chem Phys; 2017 Nov; 19(43):29057-29067. PubMed ID: 28920600 [TBL] [Abstract][Full Text] [Related]
15. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar. Chang YC; Xu Y; Lu Z; Xu H; Ng CY J Chem Phys; 2012 Sep; 137(10):104202. PubMed ID: 22979852 [TBL] [Abstract][Full Text] [Related]
16. A pulsed-field ionization photoelectron secondary ion coincidence study of the H2+ (X,upsilon+=0-15,N+=1)+He proton transfer reaction. Tang XN; Xu H; Zhang T; Hou Y; Chang C; Ng CY; Chiu Y; Dressler RA; Levandier DJ J Chem Phys; 2005 Apr; 122(16):164301. PubMed ID: 15945678 [TBL] [Abstract][Full Text] [Related]
17. Time-dependent quantum dynamics study of the Ne + H2+ (v = 0-9) and D2+ (v = 0-12) proton transfer reactions at thermal collision energies. Mayneris-Perxachs J; González M J Phys Chem A; 2009 Apr; 113(16):4105-9. PubMed ID: 19203257 [TBL] [Abstract][Full Text] [Related]
18. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH(+) + H2/D2 → H2O(+)/HDO(+) + H/D reactions. Martinez O; Ard SG; Li A; Shuman NS; Guo H; Viggiano AA J Chem Phys; 2015 Sep; 143(11):114310. PubMed ID: 26395708 [TBL] [Abstract][Full Text] [Related]
19. Effects of reactant rotational excitations on H2 + NH2 → H + NH3 reactivity. Song H; Guo H J Chem Phys; 2014 Dec; 141(24):244311. PubMed ID: 25554155 [TBL] [Abstract][Full Text] [Related]
20. Potential surfaces and dynamics of the O(3P)+H2O(X1A1)-->OH(X2pi)+OH(X2pi) reaction. Braunstein M; Panfili R; Shroll R; Bernstein L J Chem Phys; 2005 May; 122(18):184307. PubMed ID: 15918704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]