These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 24410221)
1. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange. Moussa JE J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221 [TBL] [Abstract][Full Text] [Related]
2. Random phase approximation with second-order screened exchange for current-carrying atomic states. Zhu W; Zhang L; Trickey SB J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. Förster A J Chem Theory Comput; 2022 Oct; 18(10):5948-5965. PubMed ID: 36150190 [TBL] [Abstract][Full Text] [Related]
10. Staggered Mesh Method for Correlation Energy Calculations of Solids: Random Phase Approximation in Direct Ring Coupled Cluster Doubles and Adiabatic Connection Formalisms. Xing X; Lin L J Chem Theory Comput; 2022 Feb; 18(2):763-775. PubMed ID: 34989566 [TBL] [Abstract][Full Text] [Related]
11. Assessment of random phase approximation and second-order Møller-Plesset perturbation theory for many-body interactions in solid ethane, ethylene, and acetylene. Pham KN; Modrzejewski M; Klimeš J J Chem Phys; 2023 Apr; 158(14):144119. PubMed ID: 37061498 [TBL] [Abstract][Full Text] [Related]
12. Screened Exchange Corrections to the Random Phase Approximation from Many-Body Perturbation Theory. Hummel F; Grüneis A; Kresse G; Ziesche P J Chem Theory Comput; 2019 May; 15(5):3223-3236. PubMed ID: 30901204 [TBL] [Abstract][Full Text] [Related]
13. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies. Chen GP; Agee MM; Furche F J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213 [TBL] [Abstract][Full Text] [Related]
14. Spin-component-scaling second-order Møller-Plesset theory and its variants for economical correlation energies: unified theoretical interpretation and use for quartet N3. Varandas AJ J Chem Phys; 2010 Aug; 133(6):064104. PubMed ID: 20707558 [TBL] [Abstract][Full Text] [Related]
15. Making the random phase approximation to electronic correlation accurate. Grüneis A; Marsman M; Harl J; Schimka L; Kresse G J Chem Phys; 2009 Oct; 131(15):154115. PubMed ID: 20568855 [TBL] [Abstract][Full Text] [Related]
16. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel. Dixit A; Ángyán JG; Rocca D J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249 [TBL] [Abstract][Full Text] [Related]
17. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene. Pham KN; Modrzejewski M; Klimeš J J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856055 [TBL] [Abstract][Full Text] [Related]
18. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems. Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724 [TBL] [Abstract][Full Text] [Related]
19. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Beuerle M; Graf D; Schurkus HF; Ochsenfeld C J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814 [TBL] [Abstract][Full Text] [Related]