BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24410258)

  • 1. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.
    Tenney CM; Cygan RT
    Environ Sci Technol; 2014; 48(3):2035-42. PubMed ID: 24410258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling CO
    Liang Y; Tsuji S; Jia J; Tsuji T; Matsuoka T
    Acc Chem Res; 2017 Jul; 50(7):1530-1540. PubMed ID: 28661135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 adhesion on hydrated mineral surfaces.
    Wang S; Tao Z; Persily SM; Clarens AF
    Environ Sci Technol; 2013 Oct; 47(20):11858-65. PubMed ID: 24040744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of CO₂ solubility-trapping and mineral-trapping in microbial-mediated CO₂-brine-sandstone interaction.
    Zhao J; Lu W; Zhang F; Lu C; Du J; Zhu R; Sun L
    Mar Pollut Bull; 2014 Aug; 85(1):78-85. PubMed ID: 25015018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration.
    Iglauer S; Mathew MS; Bresme F
    J Colloid Interface Sci; 2012 Nov; 386(1):405-14. PubMed ID: 22921540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO
    Jun YS; Zhang L; Min Y; Li Q
    Acc Chem Res; 2017 Jul; 50(7):1521-1529. PubMed ID: 28686035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clay minerals affect the stability of surfactant-facilitated carbon nanotube suspensions.
    Han Z; Zhang F; Lin D; Xing B
    Environ Sci Technol; 2008 Sep; 42(18):6869-75. PubMed ID: 18853802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2011 Feb; 45(4):1737-43. PubMed ID: 21222477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative permeability experiments of carbon dioxide displacing brine and their implications for carbon sequestration.
    Levine JS; Goldberg DS; Lackner KS; Matter JM; Supp MG; Ramakrishnan TS
    Environ Sci Technol; 2014; 48(1):811-8. PubMed ID: 24274391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics modeling of carbon dioxide, water and natural organic matter in Na-hectorite.
    Yazaydin AO; Bowers GM; Kirkpatrick RJ
    Phys Chem Chem Phys; 2015 Sep; 17(36):23356-67. PubMed ID: 26286865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Mineral Dissolution/Precipitation and CO
    Xu R; Li R; Ma J; He D; Jiang P
    Acc Chem Res; 2017 Sep; 50(9):2056-2066. PubMed ID: 28812872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO
    Park T; Yoon S; Jung J; Kwon TH
    Environ Sci Technol; 2020 Dec; 54(23):15355-15365. PubMed ID: 33186009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.
    Droge ST; Goss KU
    Environ Sci Technol; 2013 Dec; 47(24):14224-32. PubMed ID: 24266737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.