These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 24410342)
41. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. de Lange WJ; Farrell ET; Kreitzer CR; Jacobs DR; Lang D; Glukhov AV; Ralphe JC Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1670-H1686. PubMed ID: 33606581 [TBL] [Abstract][Full Text] [Related]
42. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Park H; Larson BL; Guillemette MD; Jain SR; Hua C; Engelmayr GC; Freed LE Biomaterials; 2011 Mar; 32(7):1856-64. PubMed ID: 21144580 [TBL] [Abstract][Full Text] [Related]
43. Contractile and electrophysiologic characterization of optimized self-organizing engineered heart tissue. Sondergaard CS; Mathews G; Wang L; Jeffreys A; Sahota A; Wood M; Ripplinger CM; Si MS Ann Thorac Surg; 2012 Oct; 94(4):1241-8; discussion 1249. PubMed ID: 22795054 [TBL] [Abstract][Full Text] [Related]
44. Medium perfusion enables engineering of compact and contractile cardiac tissue. Radisic M; Yang L; Boublik J; Cohen RJ; Langer R; Freed LE; Vunjak-Novakovic G Am J Physiol Heart Circ Physiol; 2004 Feb; 286(2):H507-16. PubMed ID: 14551059 [TBL] [Abstract][Full Text] [Related]
45. Practical aspects of cardiac tissue engineering with electrical stimulation. Cannizzaro C; Tandon N; Figallo E; Park H; Gerecht S; Radisic M; Elvassore N; Vunjak-Novakovic G Methods Mol Med; 2007; 140():291-307. PubMed ID: 18085215 [TBL] [Abstract][Full Text] [Related]
46. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Kharaziha M; Nikkhah M; Shin SR; Annabi N; Masoumi N; Gaharwar AK; Camci-Unal G; Khademhosseini A Biomaterials; 2013 Sep; 34(27):6355-66. PubMed ID: 23747008 [TBL] [Abstract][Full Text] [Related]
47. A Bioreactor for Controlled Electrical and Mechanical Stimulation of Developing Scaffold-Free Constructs. Van Houten SK; Bramson MTK; Corr DT J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35244139 [TBL] [Abstract][Full Text] [Related]
48. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Heher P; Maleiner B; Prüller J; Teuschl AH; Kollmitzer J; Monforte X; Wolbank S; Redl H; Rünzler D; Fuchs C Acta Biomater; 2015 Sep; 24():251-65. PubMed ID: 26141153 [TBL] [Abstract][Full Text] [Related]
49. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. Rosa RG; Joazeiro PP; Bianco J; Kunz M; Weber JF; Waldman SD PLoS One; 2014; 9(8):e105170. PubMed ID: 25126941 [TBL] [Abstract][Full Text] [Related]
50. Biophysical regulation during cardiac development and application to tissue engineering. Gerecht-Nir S; Radisic M; Park H; Cannizzaro C; Boublik J; Langer R; Vunjak-Novakovic G Int J Dev Biol; 2006; 50(2-3):233-43. PubMed ID: 16479491 [TBL] [Abstract][Full Text] [Related]
51. Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue. Tandon N; Taubman A; Cimetta E; Saccenti L; Vunjak-Novakovic G Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6219-23. PubMed ID: 24111161 [TBL] [Abstract][Full Text] [Related]
52. Design and fabrication of heart muscle using scaffold-based tissue engineering. Blan NR; Birla RK J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281 [TBL] [Abstract][Full Text] [Related]
53. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Gouveia PJ; Rosa S; Ricotti L; Abecasis B; Almeida HV; Monteiro L; Nunes J; Carvalho FS; Serra M; Luchkin S; Kholkin AL; Alves PM; Oliveira PJ; Carvalho R; Menciassi A; das Neves RP; Ferreira LS Biomaterials; 2017 Sep; 139():213-228. PubMed ID: 28622605 [TBL] [Abstract][Full Text] [Related]
54. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies. Cook CA; Huri PY; Ginn BP; Gilbert-Honick J; Somers SM; Temple JP; Mao HQ; Grayson WL Biotechnol Bioeng; 2016 Aug; 113(8):1825-37. PubMed ID: 26825810 [TBL] [Abstract][Full Text] [Related]
55. Mechanical stimulation enhances development of scaffold-free, 3D-printed, engineered heart tissue grafts. Lui C; Chin AF; Park S; Yeung E; Kwon C; Tomaselli G; Chen Y; Hibino N J Tissue Eng Regen Med; 2021 May; 15(5):503-512. PubMed ID: 33749089 [TBL] [Abstract][Full Text] [Related]
56. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage. Chou CL; Rivera AL; Williams V; Welter JF; Mansour JM; Drazba JA; Sakai T; Baskaran H Acta Biomater; 2017 Sep; 60():210-219. PubMed ID: 28709984 [TBL] [Abstract][Full Text] [Related]